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Abstract
In this paper we are concerned with understanding the nature of program metrics for calculi with
higher-order types, seen as natural generalizations of program equivalences. Some of the metrics we
are interested in are well-known, such as those based on the interpretation of terms in metric spaces
and those obtained by generalizing observational equivalence. We also introduce a new one, called
the interactive metric, built by applying the well-known Int-Construction to the category of metric
complete partial orders. Our aim is then to understand how these metrics relate to each other,
i.e., whether and in which cases one such metric refines another, in analogy with corresponding
well-studied problems about program equivalences. The results we obtain are twofold. We first show
that the metrics of semantic origin, i.e., the denotational and interactive ones, lie in between the
observational and equational metrics and that in some cases, these inclusions are strict. Then, we
give a result about the relationship between the denotational and interactive metrics, revealing that
the former is less discriminating than the latter. All our results are given for a linear lambda-calculus,
and some of them can be generalized to calculi with graded comonads, in the style of Fuzz.
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1 Introduction

Program equivalence is one of the most important concepts in the semantics of programming
languages: every way of giving semantics to programs induces a notion of equivalence, and
the various notions of equivalence available for the same language, even when very different
from each other, help us understanding the deep nature of the language itself. Indeed, there
is not one single, preferred way to construct a notion of equivalence for programs. The latter
is especially true in presence of higher-order types or in scenarios in which programs have a
fundamentally interactive behavior, e.g. in process algebras. For example, the relationship
between observational equivalence, the most coarse-grained congruence relation among those
which are coherent with the underlying notion of observation, and denotational semantics
has led in some cases to so-called full-abstraction results (e.g. [17, 12]), which are known
to hold only for some denotational models and in some programming languages. A similar
argument applies to applicative bisimularity, which, e.g., is indeed fully abstract in presence
of probabilistic effects [8, 9] but not so in presence of nondeterministic effects [19].

Equivalences, although central to the theory of programming languages, do not allow
us to say anything about all those pairs of programs which, while qualitatively exhibiting
different behaviors, behave similarly in a quantitative sense. This has led to the study of
notions of distance between programs, which often take the form of (pseudo-)metrics on
the space of programs or their denotations. In this sense we can distinguish at least three
defining styles:
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Figure 1 Illustration of our comparison results for program metrics: an arrow da → db indicates
that db is coarser (i.e. less discriminating) than da. Thick arrows indicate strict domination.

First, observational equivalence can be generalized to a metric, maintaining the intrinsic
quantification across all contexts, but observing a difference rather than an equality [6, 7].
There is also an approach obtained by generalizing equational logic, recently introduced
by Mardare et al. [21], which has been adapted to higher-order computations with both
linear [10] and non-linear [11] types.
Finally, linear calculi admit a denotational interpretation in the category of metric
complete partial orders [3], and this is well-known to work well in presence of graded
comonads.

In other words, various definitional styles for program equivalences for higher-order calculi
have been proved to have a meaningful metric counterpart, at least when the underlying
type system is based on linear or graded types. There is a missing tale in this picture,
however, namely the one provided by interactive semantic models akin to game semantics
and the geometry of interaction [14], which were key ingredients towards the aforementioned
full-abstraction results. Moreover, the relationship between the various notions of distance
in the literature has been studied only superficially, and the overall situation is currently less
clear than for program equivalences.

The aim of this work is to shed light on the landscape about metrics in higher-programs.
Notably, a new metric between programs inspired by Girard’s geometry of interaction [14] is
defined, being obtained by applying the so-called Int-construction [18, 2] to the category of
metric complete partial orders. The result is a denotational model, which, while fundamentally
different from existing metric models, provides a natural way to measure the distance between
programs, which we will call the interactive metric. In the interactive metric, differences
between two programs can be observed incrementally, by interacting with the underlying
denotational interpretation in the question-answer protocol typical of game semantics and
the geometry of interaction.

Technically, the main part of the work is an in-depth study of the relationships between
the various metrics existing in the literature, including the interactive metric. Overall,
the result of this analysis is the one in Figure 1. The observational metric remains the
least discriminating, while the equational metric is proved to be the one assigning the
greatest distances to (pairs of) programs. The two metrics of a semantic nature, namely the
denotational one and the interactive one, stand in between the two metrics mentioned above,
with the interactive metric being more discriminating than the denotational one.

The remainder of this manuscript is structured as follows. After recalling some basic
facts about metric spaces in Section 2, in Section 3 we introduce a basic linear programming
language over the reals and its associated notion of program metrics; in Section 4 we discuss
the logical relation metric and the observational metric; in Section 5 we discuss the equational
metric; in Section 6 we introduce the two denotational metrics; Sections 7 and 8 contain our
main comparison results, and in Section 9 we discuss the case of graded exponentials.
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2 Preliminaries

In this section, we recall the notions of extended pseudo-metric spaces and non-expansive
functions. Let R∞

≥0 be the set {a ∈ R | a ≥ 0}∪{∞} of non-negative real numbers and infinity.
An extended pseudo-metric space X consists of a set |X| and a function dX : |X|× |X| → R∞

≥0
satisfying the following conditions:

For all x ∈ |X|, we have dX(x, x) = 0;
For all x, y ∈ |X|, we have dX(x, y) = dX(y, x);
For all x, y, z ∈ |X|, we have dX(x, z) ≤ dX(x, y) + dX(y, z).

In the sequel, we simply refer to extended pseudo-metric spaces as metric spaces, and we
denote the underlying set |X| by X.

For metric spaces X and Y , a function f : X → Y is said to be non-expansive when for
all x, x′ ∈ X, we have dY (fx, fx′) ≤ dX(x, x′). We write Met for the category of metric
spaces and non-expansive functions. The category Met has a symmetric monoidal closed
structure (1,⊗,⊸) where the metric of the tensor product X ⊗ Y is given by

dX⊗Y ((x, y), (x′, y′)) = dX(x, x′) + dY (y, y′).

We suppose that the monoidal product is left associative, and we denote the n-fold monoidal
product of X by X⊗n. In the sequel, R denotes the metric space of real numbers equipped
with the absolute distance dR(a, b) = |a− b|.

3 A Linear Programming Language

3.1 Syntax and Operational Semantics

We introduce our target language that is a linear lambda calculus equipped with constant
symbols for real numbers and non-expansive functions. We fix a set S of non-expansive
functions f : R⊗n → R with n ≥ 1. We call n the arity of f . For example, S may include
addition +: R ⊗ R → R and trigonometric functions such as sin, cos : R → R. We assume
function symbols f for f ∈ S and constant symbols a for real numbers a ∈ R.

Our language, denoted by ΛS , is given as follows. Types and environments are given by

Types τ, σ := R | I | τ ⊸ σ | τ ⊗ σ, Environments Γ,∆ := ∅ | Γ, x : τ.

We denote the set of types by Ty and denote the set of environments by Env. We always
suppose that every variable appears at most once in any environment. For environments Γ
and ∆ that do not share any variable, we write Γ#∆ for a merge [4, 15] of Γ and ∆, that is
an environment obtained by shuffling variables in Γ and ∆ preserving the order of variables
in Γ and the order of variables in ∆. For example, (x : τ, y : σ, y′ : σ′, x′ : τ ′) is a merge of
(x : τ, x′ : τ ′) and (y : σ, y′ : σ′). Formally, an environment Ξ is said to be a merge of Γ and
∆ when

Ξ, Γ and ∆ are equal to the empty environment; or
Γ = Γ′, x : τ and there is a merge Ξ′ of Γ′ and ∆ such that Ξ = Ξ′, x : τ ; or
∆ = ∆′, x : τ and there is a merge Ξ′ of Γ and ∆′ such that and Ξ = Ξ′, x : τ .

When we write Γ#∆, we implicitly suppose that no variable is shared by Γ and ∆. Terms,
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x : τ ⊢ x : τ
a ∈ R

⊢ a : R ⊢ ∗ : I
f ∈ S Γ1 ⊢ M1 : R . . . Γar(f) ⊢ Mar(f) : R

Γ1# · · · #Γar(f) ⊢ f(M1, . . . ,Mar(f)) : R

Γ, x : σ ⊢ M : τ
Γ ⊢ λx : σ.M : σ ⊸ τ

Γ ⊢ M : σ ⊸ τ ∆ ⊢ N : σ
Γ#∆ ⊢ M N : τ

Γ ⊢ M : τ ∆ ⊢ N : σ
Γ#∆ ⊢ M ⊗N : τ ⊗ σ

Γ ⊢ M : I ∆ ⊢ N : τ
Γ#∆ ⊢ let ∗ be M in N : τ

Γ ⊢ M : σ1 ⊗ σ2 ∆, x : σ1, y : σ2 ⊢ N : τ
Γ#∆ ⊢ let x⊗ y be M in N : τ

Figure 2 Typing Rules

V ↪→ V

M1 ↪→ a1 . . . Mn ↪→ an

f(M1, . . . ,Mn) ↪→ f(a1, . . . , an)
M ↪→ λx : τ. L N ↪→ V L[V/x] ↪→ U

M N ↪→ U

M ↪→ V N ↪→ U

M ⊗N ↪→ V ⊗ U

M ↪→ ∗ N ↪→ V

let ∗ be M in N ↪→ V

M ↪→ V ⊗ U N [V/x, U/y] ↪→ W

let x⊗ y be M in N ↪→ W

Figure 3 Evaluation Rules

values and contexts are given by the following BNF.

Terms M,N := x ∈ Var | a | ∗ | f(M1, . . . ,Mar(f)) | M N | λx : τ.M |
M ⊗N | let ∗ be M in N | let x⊗ y be M in N

Values V,U := a | ∗ | λx : τ.M | V ⊗ U

Contexts C[−] := [−] | f(M, . . . ,M ′, C[−], N ′, . . . , N) | C[−]M | M C[−] | λx : τ. C[−] |
C[−] ⊗M | M ⊗ C[−] | let ∗ be C[−] in M | let ∗ be M in C[−] |
let x⊗ y be C[−] in M | let x⊗ y be M in C[−]

Here, a ranges over R, f ranges over S, and x ranges over a countably infinite set Var of
variables. We write Γ ⊢ M : τ when the typing judgement is derived from the rules given in
Figure 2. Evaluation rules are given in Figure 3. Since ΛS is a purely linear programming
language, for any closed term ⊢ M : τ , there is a value ⊢ V : τ such that M ↪→ V . For an
environment Γ and a type τ , we define Term(Γ, τ) to be the set of all terms M such that
Γ ⊢ M : τ , and we define Value(τ) to be the set of closed values of type τ . We simply write
Term(τ) for Term(∅, τ), that is the set of closed terms of type τ . For a context C[−], we
write C[−] : (Γ, τ) → (∆, σ) when for all terms Γ ⊢ M : τ , we have ∆ ⊢ C[M ] : σ.

We adopt Church-style lambda abstraction so that every type judgement Γ ⊢ M : τ has a
unique derivation, which makes it easier to define denotational semantics for ΛS . Except for
this point, our language can be understood as a fragment of Fuzz [25]— the typing judgment
x : σ, . . . , y : ρ ⊢ M : τ corresponds to x :1 σ, . . . , y :1 ρ ⊢ M : τ in Fuzz. In Section 9, we
discuss extending our results in this paper to a richer language, closer to the one from [25].

3.2 Equational Theory
In this paper we consider an equational theory for ΛS , which will turn out to be instrumental
to define a notion of well-behaving family of metrics for ΛS called admissibility (Section 3.3)
and to give a quantitative equational theory for ΛS (Section 5). In both cases, if two terms
are to be considered equal, then the distance between them is required to be 0. Here, we
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Γ ⊢ M : τ
Γ ⊢ M = M : τ

Γ ⊢ M = N : τ
Γ ⊢ N = M : τ

Γ ⊢ M = N : τ Γ ⊢ N = L : τ
Γ ⊢ M = L : τ

f(a1, . . . , an) = b

⊢ f(a1, . . . , aar(f)) = b : τ
Γ ⊢ M = N : τ ∆ ⊢ C[M ] : σ ∆ ⊢ C[N ] : σ

∆ ⊢ C[M ] = C[N ] : σ

Γ, x : τ ⊢ M : σ ∆ ⊢ N : τ
Γ#∆ ⊢ (λx : τ.M)N = M [N/x] : σ

Γ ⊢ M : τ ⊸ σ

Γ ⊢ λx : τ.M x = M : τ ⊸ σ

Γ ⊢ M : τ
Γ ⊢ let ∗ be ∗ in M = M : τ

Γ ⊢ let x⊗ y be M ⊗N in L : τ
Γ ⊢ let x⊗ y be M ⊗N in L = L[M/x,N/y] : τ

Γ ⊢ M : I
Γ ⊢ let ∗ be M in ∗ = M : I

Γ ⊢ M : τ ⊗ σ

Γ ⊢ let x⊗ y be M in x⊗ y = M : τ ⊗ σ

Γ ⊢ let ∗ be M in C[N ] : τ
Γ ⊢ let ∗ be M in C[N ] = C[let ∗ be M in N ] : τ

Γ ⊢ let x⊗ y be M in C[N ] : τ
Γ ⊢ let x⊗ y be M in C[N ] = C[let x⊗ y be M in N ] : τ

Figure 4 Derivation Rules of Equational Theory for ΛS

adopt the standard equational theory for the linear lambda calculus [20] extended with the
following axiom

f ∈ S f(a1, . . . , aar(f)) = b

⊢ f(a1, . . . , aar(f)) = b : τ .

For terms Γ ⊢ M : τ and Γ ⊢ N : τ , we write Γ ⊢ M = N : τ when the equality is derivable.
We may add some other axioms to the equational theory as long as the axioms are valid

when we interpret function symbols f as f and constant symbols a as a. For example, when
add: R ⊗ R → R is in S, we may add the commutativity law x : R, y : R ⊢ add(x, y) =
add(y, x) : R to the equational theory. The rest of this paper is not affected by such
extensions to the equational theory.

3.3 Admissibility
Let us call a family {dΓ,τ }Γ∈Env,τ∈Ty in which dΓ,τ is a metric on Term(Γ, τ) a metric on
ΛS . We introduce a class of metrics on ΛS , which is the object of study of this paper.

▶ Definition 1 (Admissible Metric). Let {dΓ,τ }Γ∈Env,τ∈Ty be a metric on ΛS. We say that
{dΓ,τ }Γ∈Env,τ :Ty is admissible when the following conditions hold:

(A1) For any environment Γ, any type τ , any pair of terms Γ ⊢ M : τ , Γ ⊢ N : τ and any
context C[−] : (Γ, τ) → (∆, σ), we have d∆,σ(C[M ], C[N ]) ≤ dΓ,τ (M,N).

(A2) For all a, b ∈ R, we have d∅,R(a, b) = |a− b|.
(A3) For all a1, . . . , an, b1, . . . , bn ∈ R and all closed values ⊢ V : τ and ⊢ U : τ , we have

d∅,R⊗n⊗τ

(
a1 ⊗ · · · ⊗ an ⊗ V, b1 ⊗ · · · ⊗ bn ⊗ U

)
≥ |a1 − b1| + · · · + |an − bn|.

(A4) If Γ ⊢ M = N : τ , then dΓ,τ (M,N) = 0.
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The first condition (A1) states that all contexts are non-expansive, and the second
condition (A2) states that the metric on R coincides with the absolute metric on R. (A3) states
that the distance between two terms a1 ⊗ · · · ⊗an ⊗V and b1 ⊗ · · · ⊗ bn ⊗U is bounded (from
below) by the distance between their “observable fragments” dR⊗n((a1, . . . , an), (b1, . . . , bn)).
The last condition (A4) states that dΓ,τ subsumes the equational theory for ΛS .

The definition of admissibility is motivated by the study of Fuzz [25], which is a linear type
system for verifying differential privacy [5]. There, Reed and Pierce introduce a syntactically
defined metrics on Fuzz using a family of relations called metric relations, and they prove
that all programs are non-expansive with respect to the syntactic metric (Theorem 6.4 in
[25]). (A1) is motivated by this result. Furthermore, in the definition of the metric relation,
the tensor product of types is interpreted as the monoidal product of metric spaces, and
the type of real numbers is interpreted as R with the absolute distance. (A2) and (A3) are
motivated by these definitions. In fact, given an admissible metric {dΓ,τ }Γ∈Env,τ∈Ty on ΛS ,
we can show that d∅,R⊗n coincides with the metric of R⊗n.

▶ Lemma 2. If a metric {dΓ,τ }Γ∈Env, τ∈Ty is admissible, then for all a1, b1, . . . , an, bn ∈ R,

d∅,R⊗n(a1 ⊗ · · · ⊗ an, b1 ⊗ · · · ⊗ bn) = |a1 − b1| + · · · + |an − bn|. (1)

Proof. By (A1) and (A3),∑
1≤i≤n

|ai − bi| ≤ d∅,R⊗n⊗I
(
a1 ⊗ · · · ⊗ an ⊗ ∗, b1 ⊗ · · · ⊗ bn ⊗ ∗

)
≤ d∅,R⊗n

(
a1 ⊗ · · · ⊗ an, b1 ⊗ · · · ⊗ bn

)
.

The other inequality follows from (A1), (A2) and triangle inequalities:∑
1≤i≤n

|ai − bi| ≥ d∅,R⊗n

(
a1 ⊗ a2 ⊗ · · · ⊗ an, b1 ⊗ a2 ⊗ · · · ⊗ an

)
+

∑
2≤i≤n

|ai − bi|

≥ d∅,R⊗n

(
a1 ⊗ a2 ⊗ · · · ⊗ an, b1 ⊗ b2 ⊗ a3 ⊗ · · · ⊗ an

)
+

∑
3≤i≤n

|ai − bi|

≥ · · ·
≥ d∅,R⊗n

(
a1 ⊗ a2 ⊗ · · · ⊗ an, b1 ⊗ b2 ⊗ · · · ⊗ bn

)
.

◀

The reason that we do not take (1) as the third condition of admissibility and instead rely
on the stronger condition (A3) above is that requiring (1) would not allow us to characterize
the observational metric (Section 4.2) as the least admissible metric on ΛS .

4 Logical Metric and Observational Metric

We give two syntactically defined metrics on ΛS : one is based on logical relations, and the
other is given in the style of Morris observational equivalence [24]. We then show that the
two metrics coincide. This can be seen as a metric variant of Milner’s context lemma [22].

4.1 Logical Metric
The first metric on ΛS is given by means of a quantitative form of logical relations [25] called
metric logical relations. Here, we directly define metric logical relations, and then, we define
the induced metric on ΛS . The metric logical relations

{(−) ≃τ
r (−) ⊆ Term(τ) × Term(τ)}τ∈Ty, r∈R∞

≥0
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are given by induction on τ as follows.

M ≃R
r N ⇐⇒ M ↪→ a and N ↪→ b and |a− b| ≤ r

M ≃I
r N ⇐⇒ M ↪→ ∗ and N ↪→ ∗

M ≃τ⊗σ
r N ⇐⇒ M ↪→ V ⊗ V ′ and N ↪→ U ⊗ U ′ and

∃s, s′ ∈ R∞
≥0, V ≃τ

s U and V ′ ≃σ
s′ U ′ and s+ s′ ≤ r

M ≃τ⊸σ
r N ⇐⇒ M ↪→ λx : τ.M ′ and N ↪→ λx : τ.N ′ and

∀V,U ∈ Value(τ), if V ≃τ
s U, then M ′[V/x] ≃σ

r+s N
′[U/x]

Then for an environment Γ = (x : σ, . . . , y : ρ) and a pair of terms Γ ⊢ M : τ and Γ ⊢ N : τ ,
we define dlog

Γ,τ (M,N) ∈ R∞
≥0 by

dlog
Γ,τ (M,N) = inf{r ∈ R∞

≥0 | λx : σ. · · ·λy : ρ.M ≃σ⊸···⊸ρ⊸τ
r λx : σ. · · ·λy : ρ.N}.

▶ Proposition 3. For any environment Γ and any type τ , the function dlog
Γ,τ is a metric on

Term(Γ, τ). Furthermore, {dlog
Γ,τ }Γ∈Env,τ∈Ty is admissible.

Proof. It is straightforward to show that dobs given in the next section is a metric on ΛS

and satisfies (A1). Hence, it follows from Theorem 9 that dlog
Γ,τ is a metric on Term(Γ, τ)

and satisfies (A1). (A2) and (A3) follow from the definition of dlog. The proof of (A4) is
given in Corollary 19. ◀

We call dlog logical metric.

▶ Example 1. For a ∈ R, we define a term Ma to be

⊢ a⊗ a⊗ V : R ⊗ R ⊗ ((R ⊗ R ⊸ R) ⊸ R) where V = λk : R ⊗ R ⊸ R. k 0 0.

Since dlog
∅,R(0, 1) = 1, we obtain dlog

∅,R⊗R⊗((R⊗R⊸R)⊸R)(M0,M1) = 1 + 1 + 0 = 2. □

4.2 Observational Metric
We next give a metric, which we call the observational metric, that measures distances
between terms by observing concrete values produced by any possible context. For terms
Γ ⊢ M : τ and Γ ⊢ N : τ , we define dobs

Γ,τ (M,N) ∈ R∞
≥0 by

dobs
Γ,τ (M,N) = sup

(n,σ,C[−])∈K(Γ,τ)

{
|a1 − b1| + · · · + |an − bn|

∣∣∣∣C[M ] ↪→ a1 ⊗ · · · ⊗ an ⊗ V

and C[N ] ↪→ b1 ⊗ · · · ⊗ bn ⊗ U

}
where (n, σ, C[−]) ∈ K(Γ, τ) if and only if C[−] is a context from (Γ, τ) to (∅,R⊗n ⊗ σ).

▶ Example 2. We consider the term ⊢ Ma : τ given in Example 1 again. By observing M0 and
M1 by the trivial context [−], we can directly check that dobs

∅,R⊗R⊗((R⊗R⊸R)⊸R)(M0,M1) ≥
2. (In fact, it follows from Theorem 9 that the distance is equal to 2.) The purpose of the
auxiliary type σ in the definition of K(Γ, τ) is to enable observations of this type. In this case,
while the logical metric distinguishes M0 from M1, we can not observationally distinguish
M0 from M1 by means of observations at types R⊗n when S = ∅. See Proposition 4 for
impossibility of observational distinction of these terms at R⊗n. □

▶ Proposition 4. If S = ∅, then for any n ∈ N, there is no context

C[−] : (∅,R ⊗ ((R⊗2 ⊸ R) ⊸ R)) → (∅,R⊗n).
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Proof. We first show that there is no closed term of type R⊗2 ⊸ R. To see this, for each
type τ , we inductively define |τ | ∈ Z by

|R| = 1, |I| = 0, |τ ⊗ σ| = |τ | + |σ|, |τ ⊸ σ| = −|τ | + |σ|.

We extend the definition of | − | to environments Γ = (x : τ, . . . , y : σ) by letting |Γ| to
be |τ | + · · · + |σ|. Then by induction on the derivation of Γ ⊢ M : τ , we can show that
if S = ∅, then |Γ| ≤ |τ |. Since |R⊗2 ⊸ R| = −1, we see that there is no closed term
of type R⊗2 ⊸ R. We next show the statement. Let us suppose that there is a context
C[−] : (∅,R⊗((R⊗2 ⊸ R) ⊸ R)) → (∅,R⊗n) for some n ∈ N, and we derive contradiction.
Because ΛS is normalizing, there is a value V such that C[0 ⊗ (λf : R⊗2 ⊸ R. f 0 0)] ↪→ V .
As we have observed, there is no closed value U ∈ Value(R⊗2 ⊸ R). Therefor, there
is no β-reduction of the form (λf : (R⊗2 ⊸ R). f 0 0)U ↪→ U 0 0 during the reduction
C[0 ⊗ (λf : (R⊗2 ⊸ R). f 0 0)] ↪→ V . Hence, λf : (R⊗2 ⊸ R). f 0 0 must be a subterm of
V , contradicting V ∈ Value(R⊗n). ◀

4.3 Coincidence of the Logical Metric and the Observational Metric
This section is devoted to prove that the logical metric coincides with the observational
metric. For the proof, we introduce another family of quantitative relations, called metric
relations [25]. We define the metric relations

{(−) ∼=τ
r (−) ⊆ Term(τ) × Term(τ)}τ∈Ty,r∈R∞

≥0

by induction on τ as follows.

M ∼=R
r N ⇐⇒ M ↪→ a and N ↪→ b and |a− b| ≤ r

M ∼=I
r N ⇐⇒ M ↪→ ∗ and N ↪→ ∗

M ∼=τ⊗σ
r N ⇐⇒ M ↪→ V ⊗ V ′ and N ↪→ U ⊗ U ′ and

∃s, s′ ∈ R∞
≥0, V

∼=τ
s U and V ′ ∼=σ

s′ U ′ and s+ s′ ≤ r

M ∼=τ⊸σ
r N ⇐⇒ M ↪→ λx : τ.M ′ and N ↪→ λx : τ.N ′ and

∀V ∈ Value(τ), M ′[V/x] ∼=σ
r N

′[V/x]

The only difference between the definition of ≃ and ∼= is in the case of the linear function
type.

Let us introduce some notations. For an environment Γ = (x1 : τ1, . . . , xn : τn), we
define Value(Γ) to be Value(τ1) × · · · × Value(τn). Given γ ∈ Value(Γ) and Γ ⊢ M : τ ,
we define ⊢ Mγ : τ in the obvious way. For γ = (V1, . . . , Vn), δ = (U1, . . . , Un) ∈ Value(Γ),
we write γ ≃Γ

r δ when there are s1, . . . , sn ∈ R∞
≥0 such that r ≥ s1 + · · · + sn and V1 ≃τ1

s1

U1, . . . , Vn ≃τn
sn
Un hold.

▶ Lemma 5. For any environment Γ = (x1 : τ1, . . . , xn : τn) and any pair of terms Γ ⊢ M : τ
and Γ ⊢ N : τ , if γ ∈ Value(Γ), then Mγ ∼=τ

dobs
Γ,τ

(M,N) Nγ.

Proof. We prove the statement by induction on τ . (When τ = R) Let γ = (V1, . . . , Vn)
be an element of Value(Γ). For a, b ∈ R such that Mγ ↪→ a and Nγ ↪→ b, we show that
|a− b| ≤ dobs

Γ,R(M,N). Let a context C[−] be

(λx1 : τ1. · · ·λxn : τn. [−] ⊗ ∗)V1 · · · Vn.

Then, since we have C[M ] ↪→ a ⊗ ∗ and C[N ] ↪→ b ⊗ ∗, we obtain |a − b| ≤ dobs
Γ,R(M,N).

(When τ = σ1 ⊗σ2) Let γ = (V1, . . . , Vn) be an element of Value(Γ). For U1, V1 ∈ Value(σ1)
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and U2, V2 ∈ Value(σ2) such that Mγ ↪→ U1 ⊗ U2 and Nγ ↪→ V1 ⊗ V2, we show that there
are s, s′ ∈ R∞

≥0 such that U1 ∼=σ1
s W1 and U2 ∼=σ2

s′ W2 and s+ s′ ≤ dobs
Γ,σ1⊗σ2

(M,N). By the
induction hypothesis on σ1 and σ2, we obtain U1 ∼=σ1

dobs
∅,σ1

(U1,W1) W1 and U2 ∼=σ2
dobs
∅,σ2

(U2,W2) W2.

Hence, by the definition of ∼=, we have Mγ ∼=σ1⊗σ2
dobs
∅,σ1

(U1,W1)+dobs
∅,σ2

(U2,W2) Nγ. It remains to

check that dobs
∅,σ1

(U1,W1) + dobs
∅,σ2

(U2,W2) ≤ dobs
Γ,σ1⊗σ2

(M,N). To see this, we show that for
any t1 < dobs

∅,σ1
(U1,W1) and t2 < dobs

∅,σ2
(U2,W2), we have t1 + t2 ≤ dobs

Γ,σ1⊗σ2
(M,N). Given

such t1 and t2, we can find contexts C1[−] : (∅, σ1) → (∅,R⊗n ⊗ ρ1) and C2[−] : (∅, σ2) →
(∅,R⊗m ⊗ ρ2) such that

C1[U1] ↪→ a1 ⊗ · · · ⊗ an ⊗W1,

C1[V1] ↪→ b1 ⊗ · · · ⊗ bn ⊗W ′
1,

C2[U2] ↪→ c1 ⊗ · · · ⊗ cm ⊗W2,

C2[V2] ↪→ d1 ⊗ · · · ⊗ dm ⊗W ′
2,

and

t1 ≤ |a1 − b1| + · · · + |an − bn|, t2 ≤ |c1 − d1| + · · · + |cm − dm|.

We define a context D[−] by

D[−] = let y ⊗ z be (λx1 : τ1. · · ·λxn : τn. [−])V1 · · · Vn in
let v ⊗ v′ be C1[y] in let u⊗ u′ be C2[z] in (H (v ⊗ u)) ⊗ (v′ ⊗ u′)

where y and z are fresh variables that do not appear in C[−] nor D[−], and ⊢ H : R⊗n ⊗
R⊗m → R⊗(n+m) is a value that changes bracketing by using let-bindings. Then, we obtain

B[M ] ↪→ a1 ⊗ · · · ⊗ an ⊗ c1 ⊗ · · · ⊗ cm ⊗ (W1 ⊗W2),
B[N ] ↪→ b1 ⊗ · · · ⊗ bn ⊗ d1 ⊗ · · · ⊗ dm ⊗ (W ′

1 ⊗W ′
2).

Hence, t1 + t2 ≤ dobs
Γ,σ1⊗σ2

(M,N). (When τ = σ1 ⊸ σ2) Let γ = (V1, . . . , Vn) be an
element of Value(Γ). Given λx : σ1.M

′ and λx : σ1. N
′ in Value(σ1 ⊸ σ2) such that

Mγ ↪→ λx : σ1.M
′ and Nγ ↪→ λx : σ1. N

′, we show that for any U ∈ Value(σ1), we have
M ′[U/x] ∼=σ2

dobs
Γ,σ1⊸σ2

(M,N) N
′[U/x]. By the induction hypothesis on σ2 and the definition of

∼=, we have

M ′[U/x] ∼=σ2
dobs
∅,σ2

((λx:σ1. M ′) U,(λx:σ1. N ′) U) N
′[U/x].

Hence, it remains to check that dobs
∅,σ2

((λx : σ1.M
′)U, (λx : σ1. N

′)U) ≤ dobs
Γ,σ1⊸σ2

(M,N).
To see this, we show that for any r < dobs

∅,σ2
((λx : σ1.M

′)U, (λx : σ1. N
′)U), we have

r ≤ dobs
Γ,σ1⊸σ2

(M,N). Since r < dobs
∅,σ2

((λx : σ1.M
′)U, (λx : σ1. N

′)U), there is a context

C[−] : (∅, σ2) → (∅,R⊗m ⊗ υ)

such that

C[(λx : σ1.M
′)U ] ↪→ a1 ⊗ · · · ⊗ am ⊗ V

C[(λx : σ1. N
′)U ] ↪→ b1 ⊗ · · · ⊗ bm ⊗W

and r ≤ |a1 − b1| + · · · + |am − bm|. We define D[−] by

D[−] = (λy : σ1 ⊸ σ2. C[y U ]) ((λx1 : τ1. · · ·λxn : τn. [−])V1 · · · Vn).
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Since

D[M ] ↪→ a1 ⊗ · · · ⊗ am ⊗ V, D[N ] ↪→ b1 ⊗ · · · ⊗ bm ⊗W,

we see that r ≤ dobs
Γ,σ1⊸σ2

(M,N). ◀

▶ Lemma 6. Let Γ = (x1 : τ1, . . . , xn : τn) be an environment, and let γ, γ′ ∈ Value(Γ) be
substitutions. If γ ≃Γ

r γ
′, then for any term Γ ⊢ M : τ , we have Mγ ≃τ

r Mγ′.

Proof. By induction on the derivation of Γ ⊢ M : τ . ◀

▶ Lemma 7. Let τ be a type.
1. For any ⊢ M : τ , we have M ≃τ

0 M .
2. For any ⊢ M,N,L : τ , if M ≃τ

r N and N ≃τ
s L, then M ≃τ

r+s L.
3. For any ⊢ M : τ , we have M ∼=τ

0 M .
4. For any ⊢ M,N,L : τ , if M ∼=τ

r N and N ∼=τ
s L, then M ∼=τ

r+s L.

Proof. (1) follows from Lemma 6. (2) By induction on τ . For the case of τ = τ1 ⊸ τ2, we
use (1). (3 and 4) By induction on τ . ◀

▶ Lemma 8. For any type τ and any r ∈ R∞
≥0, M ≃τ

r N if and only if M ∼=τ
r N .

Proof. By induction on τ . The only non-trivial case is τ = τ1 ⊸ τ2. We first show that M ≃τ
r

N implies M ∼=τ
r N . Let λx : τ1.M

′ and λx : τ1. N
′ be values such that M ↪→ λx : τ1.M

′

and N ↪→ λx : τ1. N
′. We show that for any V ∈ Value(τ1), we have M ′[V/x] ∼=τ2

r N ′[V/x].
Given V ∈ Value(τ1), by Lemma 7, we have M ′[V/x] ≃τ2

r N ′[V/x]. By the induction
hypothesis on τ2, we obtain the conclusion M ′[V/x] ∼=τ2

r N ′[V/x]. We next suppose that
M ∼=τ

r N and M ↪→ λx : τ1.M
′ and N ↪→ λx : τ1. N

′. For all V,U ∈ Value(τ1), we show
that if V ≃τ1

s U , then M ′[V/x] ≃τ2
r+s N

′[U/x]. By Lemma 6, we have M ′[V/x] ≃τ2
s M ′[U/x].

From the assumption M ∼=τ
r N , we obtain M ′[U/x] ∼=τ2

r N ′[U/x]. Then it follows from the
induction hypothesis on τ2 that M ′[U/x] ≃τ2

r N ′[U/x]. Finally, it follows from by Lemma 7
that M ′[V/x] ≃τ2

r+s N
′[U/x]. ◀

▶ Theorem 9. For any environment Γ and any type τ , we have dobs
Γ,τ = dlog

Γ,τ .

Proof. It follows from Lemma 5 and Lemma 8 that dobs
Γ,τ ≥ dlog

Γ,τ . For the other inequality,
we show that if dlog

Γ,τ (M,N) ≤ r, then dobs
Γ,τ (M,N) ≤ r. For simplicity, we suppose that

Γ = (x : σ), and we define V for λx : σ.M and write U for λx : σ.N . When dlog
Γ,τ (M,N) ≤ r,

we have V ≃σ⊸τ
r U . Then, by Lemma 6, for any context C[−] : (Γ, τ) → (∅,R⊗m ⊗ υ), we

have C[V x] ≃R⊗m⊗υ
r C[U x]. From this, it is not difficult to derive C[M ] ≃R⊗m⊗υ

r C[N ].
By the definition of ≃, we obtain dobs

Γ,τ (M,N) ≤ r. ◀

5 Equational Metric

We give another syntactic metric on ΛS , which we call the equational metric. This is
essentially the quantitative equational theory from [10] without the rules called weak, join
and Arch. We exclude these rules since they do not affect the equational metric dequ given
below. See Remark 11 for a proof.

For terms Γ ⊢ M : τ and Γ ⊢ N : τ , and for r ∈ R∞
≥0, we write

Γ ⊢ M ≈r N : τ
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Γ ⊢ M = N : τ
Γ ⊢ M ≈0 N : τ

Γ ⊢ M ≈r N : τ
Γ ⊢ N ≈r M : τ

Γ ⊢ M ≈r N : τ Γ ⊢ N ≈s L : τ
Γ ⊢ M ≈r+s L : τ

|a− b| ≤ r

⊢ a ≈r b : R
Γ ⊢ M ≈r N : τ C[−] : (Γ, τ) → (∆, σ)

∆ ⊢ C[M ] ≈r C[N ] : σ

Figure 5 Derivation Rules for Γ ⊢ M ≈r N : τ

when we can derive the judgement from the rules in Figure 5. Then, for terms Γ ⊢ M : τ
and Γ ⊢ N : τ we define dequ

Γ,τ (M,N) ∈ R∞
≥0 by

dequ
Γ,τ (M,N) = inf{r ∈ R∞

≥0 | Γ ⊢ M ≈r N : τ}.

▶ Proposition 10. For any environment Γ and any type τ , the function dequ
Γ,τ is a metric on

Term(Γ, τ). Furthermore, {dequ
Γ,τ }Γ∈Env,τ∈Ty is admissible.

Proof. It is straightforward to check that dequ
Γ,τ is a metric on Term(Γ, τ). It is also straight-

forward to check (A1) and (A4). (A2) and (A3) follow from semantic observation (Corol-
lary 19). ◀

▶ Example 3. The equational metric measures differences between terms by comparing their
subterms. For example, we have ⊢ 2 =1 3 : R, and therefore, k : R ⊸ R ⊢ k 2 =1 k 3 : R
holds. From this, we see that dequ

(k:R⊸R),R(k 2, k 3) ≤ 1. In fact, this is an equality. This
follows from dobs

(k:R⊸R),R(k 0, k 1) ≥ 1, which is easy to check, and Theorem 18 below. □

In general, we have dobs
Γ,τ (M,N) < dequ

Γ,τ (M,N), i.e., the equational metric is strictly more
discriminating than the observational metric (Theorem 18), which is proved by semantically
inspired metrics in the next section.
▶ Remark 11. The following rules

r ≥ s Γ ⊢ M ≈s N : τ
(weak)

Γ ⊢ M ≈r N : τ
Γ ⊢ M ≈r N : τ Γ ⊢ M ≈s N : τ

(join)
Γ ⊢ M ≈min{r,s} N : τ

∀r > s, Γ ⊢ M ≈r N : τ
(Arch)

Γ ⊢ M ≈s N : τ

considered in [10] is absent in Figure 5 since they do not affect the equational metric. To
see this, let us define Γ ⊢ M ≈+

r N : τ to be the family of binary relations generated by the
rules in Figure 5 with the rules weak, join and Arch. Then we have

dequ
Γ,τ (M,N) = inf{r ∈ R∞

≥0 | Γ ⊢ M ≈+
r N : τ}.

In fact, since Γ ⊢ M ≈r N : τ implies Γ ⊢ M ≈+
r N : τ for all Γ ⊢ M : τ and Γ ⊢ N : τ , we

have dequ
Γ,τ (M,N) ≥ inf{r ∈ R∞

≥0 | Γ ⊢ M ≈+
r N : τ}. On the other hand, since the following

family of binary relations

Γ ⊢ M ≈̇r N : τ ⇐⇒ dequ
Γ,τ (M,N) ≤ r

satisfies the rules in Figure 5 and the above three rules, if Γ ⊢ M ≈+
r N : τ , then dequ

Γ,τ (M,N) ≤
r. Hence, dequ

Γ,τ (M,N) ≤ inf{r ∈ R∞
≥0 | Γ ⊢ M ≈+

r N : τ}.
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6 Models of ΛS and Associated Metrics

Now, we move our attention to semantically derived metrics on ΛS . We first give a notion of
models of ΛS based on Met-enriched symmetric monoidal closed categories. Met-enriched
symmetric monoidal closed categories are studied in [10] as models of quantitative equational
theories for the linear lambda calculus. Then, we give two examples of semantic metrics on
ΛS : one is based on domain theory, and the other is based on Geometry of Interaction.

6.1 Met-enriched Symmetric Monoidal Closed Category
We say that a symmetric monoidal closed category (C, I,⊗,⊸) is Met-enriched when every
hom-set C(X,Y ) has the structure of a metric space subject to the following conditions:

the composition is a morphism in Met from C(X,Y ) ⊗ C(Z,X) to C(Z, Y ); and
the tensor is a morphism in Met from C(X,Y ) ⊗ C(Z,W ) to C(X ⊗ Z, Y ⊗W ); and
the currying operation is an isomorphism in Met from C(X ⊗ Y,Z) to C(X,Y ⊸ Z).

For morphisms f, g : X → Y in C, we write d(f, g) for the distance between f and g.

▶ Definition 12. A pre-model M = (C, I,⊗,⊸, ⌊−⌋) of ΛS is a Met-enriched symmetric
monoidal closed category (C, I,⊗,⊸) equipped with an object ⌊R⌋ ∈ C and families of
morphisms {⌊a⌋ : I → ⌊R⌋}a∈R and {⌊f⌋ : ⌊R⌋⊗ar(f) → ⌊R⌋}f∈S.

For a pre-model M = (C, I,⊗,⊸, ⌊−⌋) of ΛS , we interpret types as follows:

JRKM = ⌊R⌋, JIKM = I, Jτ ⊗ σKM = JτKM ⊗ JσKM, Jτ ⊸ σKM = JτKM ⊸ JσKM.

For an environment Γ = (x : τ, . . . , y : σ), we define JΓKM to be JτKM ⊗ · · · ⊗ JσKM. Then,
the interpretation JΓ ⊢ M : τKM : JΓKM → JτKM in M is given in the standard manner
following [20], and constants are interpreted as follows: J⊢ a : RKM = ⌊a⌋,

JΓ# · · · #∆ ⊢ f(M, . . . , N) : RKM = ⌊f⌋ ◦ (JMKM ⊗ · · · ⊗ JNKM) ◦ θ

where θ : JΓ#∆KM ∼=−→ JΓKM ⊗ J∆KM swaps objects following the merge Γ#∆.

▶ Definition 13. We say that a pre-model M = (C, I,⊗,⊸, ⌊−⌋) of ΛS is a model of ΛS if
M satisfies the following three conditions.

(M1) For any f ∈ S, if f(a1, . . . , aar(f)) = b, then Jf(a1, . . . , an)KM = JbKM.
(M2) For all a, b ∈ R, d(⌊a⌋, ⌊b⌋) = |a− b|.
(M3) For all x, y : I → X in C and all finite sequences a1, . . . , an, b1, . . . , bn ∈ R, we have

d(⌊a1⌋ ⊗ · · · ⊗ ⌊an⌋ ⊗ x, ⌊b1⌋ ⊗ · · · ⊗ ⌊bn⌋ ⊗ y) ≥ |a1 − b1| + · · · + |an − bn|.

The first condition corresponds to the reduction rule for function symbols and is necessary
to prove soundness for models of ΛS . The remaining conditions are for admissibility of the
metric derived from models of ΛS .

▶ Proposition 14 (Soundness). Let M be a model of ΛS. For any term M ∈ Term(τ) and
any value V ∈ Value(τ), if M ↪→ V , then JMKM = JV KM.

Proof. By induction on the derivation ofM ↪→ V . Except for the case f(M1, . . . ,Mar(f)) ↪→ b,
we can check JMKM = JV KM by using soundness of symmetric monoidal closed categories
with respect to the linear lambda calculus [20]. The case f(M1, . . . ,Mar(f)) ↪→ b follows from
(M1). ◀
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Let M = (C, I,⊗,⊸, ⌊−⌋) be a model of ΛS . For an environment Γ and a type τ , we
define dM

Γ,τ to be the function

d(J−KM, J−KM) : Term(Γ, τ) × Term(Γ, τ) → R∞
≥0.

▶ Proposition 15. For any environment Γ and any type τ , the function dM
Γ,τ is a metric on

Term(Γ, τ). Furthermore, {dM
Γ,τ }Γ∈Env,τ∈Ty is admissible.

Proof. It follows from Met-enrichment that dM
Γ,τ is a metric and (A1) holds. (A2) and (A3)

follow from (M2) and (M3). (A4) follows from soundness of symmetric monoidal closed
categories with respect to the linear lambda calculus [20] and (M1). ◀

▶ Example 4. The symmetric monoidal closed category Met of metric spaces and non-
expansive functions can be extended to a model (Met, I,⊗,⊸, ⌊−⌋) of ΛS where we define
⌊R⌋ ∈ Met to be R, and for f ∈ S, we define ⌊f⌋ : R⊗ar(f) → R to be f . □

6.2 Denotational Metric
In this section, we recall the notion of metric cpos introduced in [3] as a denotational model
of Fuzz, and we give a model of ΛS based on metric cpos. While we do not need the domain-
theoretic feature of metric cpos to model ΛS , we believe that the category of metric cpos is a
good place to explore how metrics from denotational models and metrics from interactive
semantic models are related. This is because the domain theoretic structure of the category
of metric cpos directly gives rise to an interactive semantic model via Int-construction as we
show in Section 6.3.2.

Let us recall the notion of (pointed) metric cpos [3].

▶ Definition 16. A (pointed) metric cpo X consists of a metric space (|X|, dX) with a
partial order ≤X on |X| such that (|X|,≤X) is a (pointed) cpo, and for all ascending chains
(xi)i∈N and (x′

i)i∈N on X, we have dX

(∨
i∈N xi,

∨
i∈N x

′
i

)
≤

∨
i∈N dX(xi, x

′
i).

For metric cpos X and Y , a function f : |X| → |Y | is said to be continuous and non-expansive
when f is a continuous function from (|X|,≤X) to (|Y |,≤Y ) and is a non-expansive function
from (|X|, dX) to (|Y |, dY ). Below, we simply write X for the underlying set |X|.

Pointed metric cpos and continuous and non-expansive functions form a category, which is
denoted by MetCppo. The unit object I of MetCppo is the unit object of Met equipped
with the trivial partial order. The tensor product X ⊗ Y is given by the tensor product of
metric spaces with the componentwise order. The hom-object X ⊸ Y is given by the set of
continuous and non-expansive functions equipped with the pointwise order and

dX⊸Y (f, g) = sup
x∈X

dY (fx, gx).

We associate MetCppo with the structure of a model of ΛS as follows. We define ⌊R⌋ to
be (R ∪ {⊥}, dR,≤R) where dR is the extension of the metric on R given by dR(a,⊥) = ∞
for all a ∈ R, and (R ∪ {⊥},≤R) is the lifting of the discrete cpo R. For f ∈ S, we define
⌊f⌋ : R⊗ar(f) → R to be the function satisfying ⌊f⌋(x1, . . . , xar(f)) = y ∈ R if and only if
x1, . . . , xar(f) ∈ R and f(x1, . . . , xar(f)) = y. In the sequel, we denote the metric on ΛS

induced by this model by dden, and we call the metric dden the denotational metric.
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Figure 6 Interpretation of Terms in the Interactive Semantic Model

6.3 Interactive Metric
We describe another model of ΛS , which we call the interactive semantic model. In the
interactive semantic model, terms are interpreted as strategies interacting with their evaluation
environments. Categorically speaking, the construction is based on the notion of trace operator
and on the related Int-construction [18]. Below, we first explain how terms are interpreted,
and then, we formally describe the construction of the interactive semantic model.

6.3.1 How Terms are Interpreted, Informally
We present the interpretation of terms in the interactive semantic model using string diagrams
without explaining their meaning precisely. We first consider a simple term F = λx : R. f(x).
Its interpretation is given by the following diagram.

fR R .

This interpretation means that given an argument a ∈ R, it returns the evaluation result of
F (a) ↪→ f(a) as follows:

a f
R

R = fa R
.

Here, the grey regions denote components corresponding to the argument a and the term
F . In this example, there is no interaction between functions and their arguments, which
instead shows up in higher-order computation. Let us consider Ma = λk : R ⊸ R. k a for
a ∈ R. The interpretation of this term is given in Figure 6a, and the interpretation of the
application Ma F is given in Figure 6b, which can be understood as a representation of the
following interaction process between the term Ma and its argument F : the term Ma first
sends the query a to the argument F , and then the argument F invokes f(a). The evaluation
result f(a) is sent to Ma, and Ma outputs the value f(a). We consider another example
N = λk : (R ⊸ R) ⊸ R. g(k (λx : R. f(x))). Its interpretation is given in Figure 6c, and
the interpretation of N Ma is given in Figure 6d. The interaction between N and Ma starts
with the query a from Ma to N . Then, N invokes f(a). The evaluation result f(a) is sent to
Ma, and Ma sends f(a) to N . Finally, N invokes g(f(a)) and outputs the evaluation result
g(f(a)) of g(f(a)).

In this way, in the interactive semantic model, terms are interpreted as string diagrams
that represent “strategies to interact with its arguments”. The intuition of interactive metric
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dint associated to the interactive semantic model is to measure difference between these
strategies. For example, we have dint

∅,(R⊸R)⊸R(M0,M1) = 1 since the difference between
the two interpretations

R

R

0 R , R

R

1 R

are the queries 0 and 1. We note that the interactive semantic model provides an intentional
view, and therefore, interactive metric distinguish some observationally equivalent terms. For
example, if S has a constant function c : R → R, then for all a ∈ R, the terms La = λk : R ⊸
R. c(k a) are observationally equivalent. On the other hand, we have dint

∅,(R⊸R)⊸R(L0, L1) =
1. This is because the interpretation of La tells us that for any value V : R ⊸ R, the first
event in the evaluation of La V is to invoke V a.

6.3.2 The Interactive Semantic Model, Formally
In order to formally describe the interactive semantic model, we first observe that the
category MetCppo has a trace operator, which is necessary to apply the Int-construction
to MetCppo. For f : X ⊗ Z → Y ⊗ Z in MetCppo, we define trZ

X,Y (f) : X → Y by

trZ
X,Y (f)(x) = the first component of f(x, z)

where z is the least fixed point of the continuous function f(x,−) : Z → Z. When we ignore
the fragment of metric spaces, the definition of trZ

X,Y (f) coincides with the definition of the
trace operator associated to the least fixed point operator on the category of pointed cpos
and continuous function [15]. Hence, in order to show that trZ

X,Y is a trace operator, it is
enough to check non-expansiveness of trZ

X,Y (f).

▶ Proposition 17. The symmetric monoidal category (MetCppo, I,⊗) equipped with the
family of operators {trZ

X,Y }X,Y,Z∈MetCppo is a traced symmetric monoidal category.

Proof. We write g : X ⊗ Z → Z and h : X ⊗ Z → Y for the continuous and non-expansive
functions such that f(x, a) = (g(x, a), h(x, a)). To prove non-expansiveness of trZ

X,Y (f), we
suppose that there are x, x′ ∈ X such that

dY (trZ
X,Y (f)(x), trZ

X,Y (f)(x′)) > dX(x, x′)

and derive a contradiction. By the assumption, dX(x, x′) is finite. We define an, a
′
n ∈ Z by

a0 = a′
0 = ⊥, an+1 = g(x, an), a′

n+1 = g(x′, a′
n).

We write a∞ for
∨

n∈N an and a′
∞ for

∨
n∈N a

′
n. Below, we show that dZ(a∞, a

′
∞) is finite.

We first check that dZ(an, a
′
n) is finite. The base case is trivial. For the induction step n > 0,

it follows from non-expansiveness of g that we have

dX(x, x′) + dZ(an, a
′
n) ≥ dZ(an+1, a

′
n+1).

Hence, we conclude that dZ(an, a
′
n) is finite. We next check that the sequence dZ(an, a

′
n) is

bounded. Since we have

trZ
X,Y (f)(x) = h(x, a∞) =

∨
n≥0

h(x, an), trZ
X,Y (f)(x′) = h(x, a′

∞) =
∨

n≥0
h(x′, a′

n),



16 On the Lattice of Program Metrics

by using Lemma 4.5 in [3], we obtain

lim inf
n→∞

dY (h(x, an), h(x′, a′
n)) ≥ dY (trZ

X,Y (f)(x), trZ
X,Y (f)(x′)) > dX(x, x′).

From this, we see that there exists N ≥ 0 such that for all n ≥ N ,

dY (h(x, an), h(x′, a′
n)) > dX(x, x′).

Then, it follows from non-expansiveness of f that for all n ≥ N , we have

dX(x, x′) + dZ(an, a
′
n) ≥ dY (h(x, an), h(x′, a′

n)) + dZ(an+1, a
′
n+1)

≥ dX(x, x′) + dZ(an+1, a
′
n+1).

Hence, since dX(x, x′) is finite, we have

dZ(an, a
′
n) ≥ dZ(an+1, a

′
n+1)

for all n ≥ N . Now, we obtain

dZ(a∞, a
′
∞) = dZ

 ∨
n≥N

an,
∨

n≥N

a′
n

 ≤ dX(aN , a
′
N ) < ∞.

Since

dX(x, x′) + dZ(a∞, a
′
∞) ≥ dY (trZ

X,Y (f)(x), trZ
X,Y (f)(x′)) + dZ(a∞, a

′
∞),

we have

dX(x, x′) ≥ dY (trZ
X,Y (f)(x), trZ

X,Y (f)(x′)),

which contradicts the assumption. ◀

Now, we can apply the Int-construction to MetCppo and obtain a symmetric monoidal
closed category Int(MetCppo). (In fact, what we obtain is a compact closed category,
and we only need its symmetric monoidal closed structure to interpret ΛS .) Objects in
Int(MetCppo) are pairs X = (X+, X−) consisting of objects X+ and X− in MetCppo,
and a morphism from X to Y in Int(MetCppo) is a morphism from X+ ⊗ Y− to X− ⊗ Y+
in MetCppo. The identity on (X+, X−) is the symmetry X+ ⊗X− ∼= X− ⊗X+, and the
composition of f : (X+, X−) → (Y+, Y−) is given by

trY−⊗Y+
X+⊗Z−,X−⊗Z+

((X− ⊗ θ) ◦ (f ⊗ g) ◦ (X+ ⊗ θ′))

where θ : Y+ ⊗ Y− ⊗ Z+ → Z+ ⊗ Y− ⊗ Y+ and θ′ : Y− ⊗ Y+ ⊗ Z− → Z− ⊗ Y− ⊗ Y+ are the
canonical isomorphisms, and we omit some coherence isomorphisms. The symmetric monoidal
closed structure of Int(MetCppo) is given as follows. The tensor unit is (I, I), and the
tensor product X⊗Y is (X+ ⊗Y+, X− ⊗Y−). The hom-object X ⊸ Y is (X− ⊗Y+, X+ ⊗Y−).
For more details on the categorical structure of Int(MetCppo), see [18, 26].

We associate Int(MetCppo) with the structure of a model of ΛS as follows. We define
⌊R⌋ to be (R, I), and for each f ∈ S, we define ⌊f⌋ : (R, I)⊗ar(f) → (R, I) by

R⊗ar(f) ⊗ I
∼=−→ R⊗ar(f) the interpretation of f in MetCppo−−−−−−−−−−−−−−−−−−−−−−−→ R

∼=−→ I⊗ar(f) ⊗R.
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idX : X → X (g : Y → Z) ◦ (f : X → Y ) f : X ⊗ · · · ⊗ Z → Y ⊗ · · · ⊗ W

X f gX
Y

Z f
...

...
X Y

Z W

(f : X → Y ) ⊗ (g : Z → W ) symX,Y : X ⊗ Y → Y ⊗ X trZ
X,Y (f) : X → Y

f

g

X Y

Z W

X

Y

Y

X
f

X Y

Figure 7 String Diagrams for the Traced Symmetric Monoidal Structure

Lx : τ ⊢ x : τM LΓ ⊢ λx : σ. M : σ ⊸ τM LΓ#∆ ⊢ M N : τM

LτM+

LτM−
M

LΓM+ LΓM−

LσM+ LσM−

LτM− LτM+ MLσM+ LσM−

LτM− LτM+

L∆M−L∆M+

NLΓM+ LΓM−
LσM− LσM+

L⊢ a : RM LΓ#∆ ⊢ f(M, N) : RM LΓ#∆ ⊢ M ⊗ N : τ ⊗ σM

a R
N

R

L∆M−L∆M+
M

LΓM+ LΓM−

R f R N
LσM− LσM+

L∆M−L∆M+
M

LΓM+ LΓM−

LτM+LτM−

LΓ#∆ ⊢ let ∗ be M in N : τM LΓ#∆ ⊢ let x ⊗ y be M in N : σM

N
LτM− LτM+

L∆M− L∆M+

MLΓM+ LΓM−

MLτ1⊗τ2M+ Lτ1⊗τ2M−

LτM− LτM+

L∆M−L∆M+

NLΓM+ LΓM−

Figure 8 The Interpretation of ΛS in Int(MetCppo)

We write dint for the metric on ΛS induced by the interactive semantic model, and we call
dint the interactive metric.

In Figure 8, we describe the interpretation of ΛS in Int(MetCppo) in terms of string
diagrams. Here, we write LτM+ and LτM− for the positive part and the negative part of the
interpretation of τ , and we write LΓ ⊢ M : τM for the interpretation of a term Γ ⊢ M : τ . See
Figure 7 (and [26]) for the meaning of string diagrams. The interpretation L⊢ ∗ : IM is not in
Figure 8 since L⊢ ∗ : IM is the identity on the unit object I, which is presented by zero wires.
In the interpretation of f(M1, . . . ,Mar(f)), we suppose that ar(f) = 2 for legibility.

7 Finding Your Way Around the Zoo

We describe how admissible metrics on ΛS in this paper are related. Below, for metrics
d = {dΓ,τ }Γ∈Env,τ∈Ty and d′ = {d′

Γ,τ }Γ∈Env,τ∈Ty on ΛS , we write d ≤ d′ when for all terms
Γ ⊢ M : τ and Γ ⊢ N : τ , we have dΓ,τ (M,N) ≤ d′

Γ,τ (M,N). We write d < d′ when we have
d ≤ d′ and d ̸= d′. Our main results are about the relationships between the various metrics
on ΛS illustrated in Figure 1.

▶ Theorem 18. The following inclusions hold.
1. For any admissible metric d on ΛS, we have dlog = dobs ≤ d ≤ dequ.
2. If a metric d on ΛS satisfies (A1) and dobs ≤ d ≤ dequ, then d is admissible.
3. dlog = dobs ≤ dden < dint ≤ dequ.
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Proof. (Proof of (1)) We first show that dobs ≤ d. For any (n, σ, C[−]) ∈ K(Γ, τ), if
C[M ] ↪→ a1 ⊗ · · · ⊗ an ⊗ V and C[N ] ↪→ b1 ⊗ · · · ⊗ bn ⊗ U , then∑

1≤i≤n

|ai − bi|
(A3)+(A4)

≤ d∅,R⊗n⊗σ(C[M ], C[N ])
(A1)
≤ dΓ,τ (M,N).

By the definition of dobs, we obtain dobs ≤ d. We next show that d ≤ dequ. We can inductively
show that if Γ ⊢ M ≈r N : τ , then dΓ,τ (M,N) ≤ r. In the induction step for Γ ⊢ M ≈0 N : τ ,
we use (A4). In the induction step for ⊢ a ≈r b : R, we use (A2). In the induction step
for ∆ ⊢ C[M ] ≈r C[N ] : σ, we use (A1). By the definition of dequ

Γ,τ (M,N), we obtain
dΓ,τ (M,N) ≤ dequ

Γ,τ (M,N). (Proof of (2)) We check that d satisfies (A2), (A3) and (A4).
The condition (A2) holds because |a − b| = dobs

∅,R(a, b) ≤ d∅,R(a, b) ≤ dequ
∅,R(a, b) = |a − b|.

(A3) follows from dobs
Γ,τ ≤ dΓ,τ . (A4) follows from dΓ,τ ≤ dequ

Γ,τ . (Proof of (3)) The inequalities
dobs ≤ dden and dint ≤ dequ follow from (3). The proof of the strict inequality dden < dint is
deferred to the next section. ◀

Concrete metrics in-between dobs and dequ are useful to calculate dobs and dequ. For
example, it is not easy to directly prove dequ

(k:R⊸I),I(k 2, k 3) ≥ 1 since we need to know that
whenever k : R ⊸ I ⊢ k 2 ≈r k 3 : I is derivable, we have r ≥ 1. Let us give a semantic proof
for the inequality dequ

(k:R⊸I),I(k 2, k 3) ≥ 1. Here, we use the interactive semantic model. The
interpretations of these terms in the interactive semantic model are

I

I

2 R , I

I

3 R

where we can directly see the values applied to k. Hence, we obtain dint
(k:R⊸I),I(k 2, k 3) = 1.

Then, the claim follows from dint ≤ dequ.
By applying Theorem 18 to dden, we can show admissibility of dobs and dequ.

▶ Corollary 19. The metrics dlog = dobs and dequ on ΛS are admissible.

Proof. We first show admissibility of dobs. As we mentioned in the proof of Proposition 3, it
remains to check that dobs satisfies (A4). When Γ ⊢ M = N : τ , then by Theorem 18, we
obtain dobs

Γ,τ (M,N) ≤ dden
Γ,τ (M,N) = 0. Hence, dlog

Γ,τ (M,N) = dobs
Γ,τ (M,N) = 0. We next show

admissibility of dequ. As we mentioned in the proof of Proposition 10, it remains to check
that dequ satisfies (A2) and (A3). Since for all a, b ∈ R, we have

|a− b| ≤ dden
∅,R(a, b) ≤ dequ

∅,R(a, b).

Hence, dequ satisfies (A2). (A3) can be checked in the same way. ◀

As for semantic metrics, we have the following separation results.

▶ Proposition 20. If S = ∅, then we have dobs < dden and dobs < dint.

Proof. We only check the statement dobs < dden. The other strict inequality can be checked
in the same way. Since dobs ≤ dden, we only need to check they are different. Let Γ be
(f : R⊗2 ⊸ R). Then, we have

dden
Γ,R⊗2(0 ⊗ (f 0 0), 1 ⊗ (f 0 0)) = 1.

On the other hand, as we observed in the proof of Proposition 4, there is no closed term of type
R⊗2 ⊸ R. Hence, dobs

Γ,R⊗2(0 ⊗ (f 0 0), 1 ⊗ (f 0 0)) = dlog
Γ,R⊗2(0 ⊗ (f 0 0), 1 ⊗ (f 0 0)) = 0. ◀



U. Dal Lago et al. 19

▶ Proposition 21. We have dden
(k:R⊸I),I(k 0, k 1) = 0 and dint

(k:R⊸I),I(k 0, k 1) = 1. In particular,
dint ̸≤ dden.

Proof. We have dden
(k:R⊸I),I(k 0, k 1) = supk : ⌊R⌋→I d(k(0), k(1)) = 0. On the other hand, for

a ∈ R, we have Lk aM = a : I → R. Hence, dint
(k:R⊸I),I(k 0, k 1) = 1. ◀

8 Comparing the Two Denotational Viewpoints

In this section we show that, by passing from MetCppo to the interactive model via the
Int-construction, one obtains a more discriminative metric. In other words, our goal is to
establish that dden < dint.

In this section, beyond the evaluation relation defined in Section 3, we will make reference
to the standard β-reduction and β-equivalence relations on ΛS . Indeed, the two semantics
we are considering behave differently with respect to these relations: for β-equivalent terms
M,N , while their interpretations in MetCppo coincide (and thus dden(M,N) = 0), this
needs not be the case in the interactive model.

Let us start by making the interactive metric more explicit. Notably, in the case
of β-normal terms, computing distances in Int(MetCppo) can be reduced to computing
distances in MetCppo as follows: a morphism from Γ to σ in Int(MetCppo) is a morphism
in MetCppo from LΓM+ ⊗ LσM+ to LΓM− ⊗ LσM+, where these two objects correspond to
tensors of the form U ⊗ · · · ⊗ U, with U ∈ {I,R}, More precisely, with any list of types
Γ one can associate two natural numbers Γ+,Γ− defined inductively by (∅)+ = (∅)− = 0,
(U∗Γ)+ = 1+Γ+, (U∗Γ)− = Γ−, (σ ⊸ τ ∗Γ)+ = σ−+τ++Γ+, (σ ⊸ τ ∗Γ)− = σ++τ−+Γ−,
(σ ⊗ τ ∗ Γ)+ = σ+ + τ+ + Γ+, (σ ⊗ τ ∗ Γ)− = σ− + τ− + Γ−. Then one has the following:

▶ Proposition 22 (first-order int-terms). Let M,N be β-normal terms such that Γ ⊢ M,N : σ
and let m = Γ+ + σ−, n = Γ− + σ+. Then there exist first-order linear terms HM

1 , . . . ,HM
n ,

depending on variables x1, . . . , xm, and a partition I1, . . . , Im of {1, . . . ,m} such that:
Γj ⊢ HM

j : U, for all j = 1, . . . , n, where Γj = {xl : U | l ∈ Ij}, with U ∈ {I,R};
JMKInt(MetCppo) =

⊗
jJH

M
j KMetCppo.

Proof. if M = x, then Γ = {x : σ}, so m = σ+ +σ− and n = σ− +σ+, hence the variables
α1, . . . , αm can be split as β1, . . . , βσ+ , γ1, . . . , γσ− , and we let, for i ≤ σ−, HM

i = γi, and
for i ≥ σ+, HM

σ−+i = αi;
if M = ⋆, then Γ = ∅ and n = 1, and we let HM

1 = ⋆;
if M = a, then Γ = ∅ and n = 1, and we let HM

1 = a;
if M = f(M1, . . . ,Mk), then there is a partition J1, . . . , Jk of 1, . . . ,m, so that Γl ⊢
Ml : U, where Γl only contains the variables αr with r ∈ Jl. Moreover, we have that
m = Γ+ + U− = Γ+ =

∑
l(Γl)+ and n = Γ− + R+ =

∑
l(Γl)− + 1. We thus define HM

i

as follows:
if i =

∑m
l=1 Γ−

l + j, with m < k and j ≤ Γ−
m+1, then HM

i = H
Mm+1
j ;

if i =
∑j

l Γ−
l + 1, then HM

i = f(HM1
Γ−

1 +1, . . . ,H
Mk

Γ−
k

+1).

if M = λx.M ′, then the HM
i are defined like the HM ′

i .
if M = xM1 . . .Mk, then there is a partition J1, . . . , Jk of ρ+ + 1, . . . ,m such that
Γ = {x : ρ} +

∑
l=1 Γl, with Γl containing only the variables αs, for s ∈ Jl, and where

ρ = σ1 ⊸ · · · ⊸ σk ⊸ σ and Γl ⊢ Ml : σl. Then m = ρ+ +
∑

l Γ+
l + σ− =

∑
l σ

−
l + σ+ +∑

l Γ+
l + σ−, so the variables α1, . . . , αm can be identified with the variables occurring in

all the terms HMl

l plus new variables βs for any negative occurrence in σ and γr for any
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f(x, z)
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Figure 9 String diagrams with int-terms for M = f(x(y0), z2) and N = g(x(z1), y3).

positive occurrence in σ; moreover, n = ρ− +
∑

l Γ−
l + σ+ =

∑
l σ

+
l + σ− +

∑
l Γ−

l + σ+.
So we define the terms HM

i as follows:
for i =

∑m
l=1 σ

+
l + j for m < k and j ≤ σ+

m+1, HM
i = H

Mm+1

Γ−
m+1+j

;

for i =
∑

l σ
+
l + s, for s ≤ σ−, HM

i = βs;
for i =

∑
l σ

+
l + σ− +

∑m
l=1 Γ−

l + j, for m < k and j ≤ Γ−
m+1, HM

i = H
Mm−1
j ;

for i =
∑

l σ
+
l + σ− +

∑
l Γ−

l + r, for r ≤ σ+, HM
i = γr.

if M = M1 ⊗ M2, then σ = σ1 ⊗ σ2 and Γ splits as Γ1 + Γ2, with Γ1 ⊢ M1 : σ1 and
Γ2 ⊢ M2 : σ2. Then m = Γ+

1 + Γ+
2 + σ−

1 + σ−
2 and n = Γ−

1 + Γ−
2 + σ+

1 + σ+
2 , so we define

HM
i as follows:
if i ≤ Γ−

1 , then HM
i = HM1

i ;
if i = Γ−

1 + j, with j ≤ Γ−
2 , then HM

i = HM2
j ;

if i = Γ− + j, with j ≤ σ+
1 , then HM

i = HM1
Γ−

1 +j
;

if i = Γ− + σ+
1 + j, with j ≤ σ+

2 , then HM
i = HM2

Γ−
2 +j

.
if M = let ⋆ be M in N , then the definition goes as for (λx.N)M ;
if M = let x⊗ y be M in N , then the definition goes as for (λx.N)M .
That JMKInt(MetCppo) =

⊗
jJH

M
j KMetCppo can easily be checked by induction on M . ◀

Intuitively, the variables occurring in the left-hand of Γj ⊢ HM
j : U correspond to the left-

hand “wires” of the string diagram representation of JMKInt(MetCppo), and the first-order
term HM

j describes what exits from i-th right-hand “wire” of JMKInt(MetCppo).

▶ Example 23. Let M = f(x(y0), z2) and N = g(x(z1), y3), so that Γ ⊢ M,N : R, where
Γ = {x : R ⊸ R, y : R ⊸ R, z : R ⊸ R}. The string diagram representations of M and N ,
with the associated int-terms, are illustrated in Fig. 9.

From Proposition 22 we can now deduce the following:

▶ Corollary 24. For all β-normal terms M,N , dint(M,N) =
∑n

j=1 d
den(HM

j , HN
j ).

For instance, in the case of Example 23, the distance dint(M,N) coincides with the sum
of the distances, computed in MetCppo, between the int-terms illustrated in Fig. 9.

We can use Corollary 24 to show that the equality dint = dden cannot hold. For instance,
while dden

(k:R⊸I),I(k2, k3) = 0, by computing the int-terms Hk2
1 (x) = Hk3

1 (x) = x, Hk3
2 = 2,

Hk3
2 = 3 we deduce dint

(k:R⊸I),I(k2, k3) = 0 + 1 = 1.
It remains to prove then that dden ≤ dint.

▶ Theorem 25. For all M,N such that Γ ⊢ M,N : σ holds, dden(M,N) ≤ dint(M,N).

▶ Example 26. For the terms M and N from Example 23, the procedure just sketched

defines the sequence: M = f(x(y0), z2) f(x,z)7→g(x,y)→ g(x(y0), y0) y 7→z→ g(x(z2), y0) 0 7→3→
g(x(z2), y3) 2 7→1→ g(x(z1), y3) = N , where at each step the replacement is of the form
HM

i [. . . φjM . . . ] 7→ HN
i [. . . φjM . . . ].
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While the argument above holds in the linear case, it does not seem to scale to graded
exponentials, and in this last case we are not even sure if a result like Theorem 25 may
actually hold (see also the discussion in the next section).

The rest of this section is devoted to prove Theorem 25. For simplicity, we will restrict
ourselves to a linear language without unit and tensor types I, σ ⊗ τ , and without the
associated term constructors. However, the argument developed below can be easily adapted
to include such constructors. Given our restriction, we can suppose w.l.o.g. that in Theorem
25 the right-hand type σ is R.

Moreover, it suffices to prove the claim for M,N β-normal, using the fact that, if M∗ and
N∗ are the β-normal forms of M,N , then dden(M,M∗) = dden(N,N∗) = 0, and moreover
dint(M∗, N∗) ≤ dint(M,N), as a consequence of the non-expansiveness of the trace operator.

Recall that

dden(M,N) = sup{dden
σ (JMKMetCppo(⃗a), JNKMetCppo(⃗a)) | a⃗ ∈ JΓKMetCppo}

dint(M,N) = sup
{

n∑
i=1

dden
R (HM

i [r⃗], HN
i [r⃗])

∣∣∣ r⃗ ∈ Rm

}

For fixed a⃗ ∈ JΓKMetCppo we will construct reals r⃗ ∈ Rm, a sequence of terms M =
M0, . . . ,Mk = N , where k = Γ− + σ+, and a bijection ρ : {1, . . . , k} → {1, . . . k} such that
the distance between Mi [⃗a] and Mi+1 [⃗a] is bounded by the distance between the int-terms
HM

ρ(i+1)[r⃗] and HN
ρ(i+1)[r⃗]. In this way we can conclude by a finite number of applications of

the triangular law that

dden
σ (M [⃗a], N [⃗a]) ≤ dden

σ (M0 [⃗a],M1 [⃗a]) + · · · + dden
σ (Mk−1 [⃗a],Mk [⃗a])

≤ dden
R (HM

ρ(1)[r⃗], HN
ρ(1)[r⃗]) + · · · + dden

R (HM
ρ(k)[r⃗], HN

ρ(k)[r⃗]) ≤ dint(M,N)

To construct the sequence M0, . . . ,Mk, we need a few preliminary results.
For any type σ (or list of types Γ), we indicate as {σ+} (resp. {σ}−) the list, read from

left to right, of positive (resp. negative) atomic occurrences in σ. Observe that σ+ (resp. σ−)
coincides with the length of the list {σ+} (resp. {σ−}).

We will establish a few bijections, more precisely:
between the elements of the list {Γ−} ∗ R and the positive subterms of M (resp. of N),
cf. Def. 27 below; this will allow us to associate each first-order term HM

i with a positive
subterm of M ;
between the elements of the list {Γ+} and the free and bound variables of M (resp. of
N); this will allow us to associate each variable xi in M with a first-order variable xi

appearing in the int-terms of M .
finally, between {Γ−} ∗ R and a certain quotient over the set of variables of M .

▶ Notation 8.1. In the following we use F (x1, . . . , xn) and G(x1, . . . , xn) to indicate linear
first-order terms with free variables included in x1, . . . , xn. Moreover, given terms M1, . . . ,Mn

of type R, we indicate with F (M1, . . . ,Mn) the (non necessarily first-order) term obtained by
substituting x1, . . . , xn with M1, . . . ,Mn in F .

▶ Definition 27. A subterm of M of the form N = F (N1, . . . , Nk) is called a positive
subterm of M if for no other first-order function g, N occurs in M in a term of the form
g(P1, . . . , Pr−1, N, Pr+1, . . . , Pk). We let PS(M) indicate the set of positive subterms of M .
Moreover, we let PS0(M) ⊆ PS(M) indicate the set of positive subterms of M containing no
free or bound variable.
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▶ Notation 8.2. In the following, when indicating positive subterms as F (M1, . . . ,Mn) we
make w.l.o.g. the assumption that the terms M1, . . . ,Mn do not start with a function symbol,
i.e. are of the form xQ1 . . . Qs.

▶ Lemma 28. There exists a bijection ιM : {Γ−} ∗ R → PS(M) (and similarly for N).

Proof. By induction on M :
if M = F (x1, . . . , xn) is a first-order term, then {Γ+} = R ∗ · · · ∗ R so {Γ−} ∗ R = {R},
and the bijection is ιM (1) = t;
if M = F (M1, . . . ,Mn), where Mi = xiMi1 . . .Miqi

, then let Mij = λz1. . . . .λznij
.t′ij ,

where for some context ∆ij = {z1 : σij1, . . . , znij : σijrij }, Γij ,∆ij ⊢ t′ij : R, with Γij

being a partition of Γ − {x1 : σ1, . . . , xn : σn}, with σi = σi1 ⊸ · · · ⊸ σiqi
⊸ R, with

σij = σij1 ⊸ · · · ⊸ σijnij ⊸ R; then by the I.H. there exist bijections ιMij between
{(Γij ,∆ij)−} and PS(Mij). Notice that PS(M) = {t} ∪

⋃
i,j PS(Mij).

Now, observe that an element of {Γ−} ∗ R is either (1) the last element R, (2) an element
of {Γ−

ij}, (3) the last element of some {σ+
ij}, or (4) an element of some {σ−

ijm}. We thus
obtain then a bijection ιM : {Γ−} ∗ R → PS(M) by letting:

if l is the last element of {Γ−} ∗ R, then ιM (l) = M ;
if l is in {Γ−

ij}, ιM (l) = ιMij
(l);

if l is the last element of {σ+
ij}, then ιM (l) = M ′

ij ;
if l is in {σ−

ijm}, ιM (l) = ιMij
(l∗), where l∗ is the corresponding element in σi.

◀

▶ Remark 29. The lemma above actually defines a bijection between the positive subterms of
t = F (N1, . . . , Nk) and the terms HM

i (which, as described in more detail below, are indeed
of the form F (x1, . . . , xk)).

Let σ be a type; for any occurrence l ∈ {σ+}, let σl indicate the unique sub-type of σ
having l as its rightmost occurrence. Intuitively, ιM (l) is the positive subterm that receives
type σl in the typing of M .

Let Γ = {x1 : σ1, . . . , xn : σn} and let V(M) be the set of free and bound variables of t.

▶ Lemma 30. There exists a bijection δM : {Γ+} → V(M) (and similarly for V(N)).

Proof. By induction on M :
if M = F (x1, . . . , xn), then Γ+ = R ∗ · · · ∗ R︸ ︷︷ ︸

n times

, and we let δM (i) = xi;

if M = F (M1, . . . ,Mn), where Mi = xiMi1 . . .Miqi , then let Mij = λz1. . . . .λznij .t
′
ij ,

where for some context ∆ij = {z1 : σij1, . . . , znij
: σijrij

}, Γij ,∆ij ⊢ t′ij : R, with Γij

being a partition of Γ − {x1 : σ1, . . . , xn : σn}, with σi = σi1 ⊸ · · · ⊸ σiqi ⊸ R, with
σij = σij1 ⊸ · · · ⊸ σijnij

⊸ R; then by the I.H. there exist bijections δMij
between

(Γij ∗ ∆ij)+ and V(Mij). Notice that V(M) = {x1, . . . , xn} ∪
⋃

i,j V(Mij).
Now, observe that an element of Γ+ is either (1) an element of Γ+

ij , (2) the last element
of some σ+

i , or (3) an element of some σ+
ijm. We obtain then a bijection ιM : Γ+ → V(M)

by letting:
if l is in Γ+

ij , δM (l) = δMij
(l);

if l is the last element of σ+
i , then δM (l) = xi;

if l is in σ+
ijm, δM (l) = δMij

(l∗), where l∗ is the corresponding element in σi.
◀

▶ Remark 31. The lemma above actually defines a bijection between the variables of M and
the first-order variables appearing in the int-terms of M (which are indeed enumerated by
the list {Γ+}).
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▶ Notation 8.3. Using the lemma above V(M) ≃ V(N) ≃ Γ+. We use X to indicate any of
these equivalent sets. As modulo renaming we can suppose δM = δN , from now on, for all
i ∈ X, we indicate as xi the variable δM (i) = δN (i).

▶ Definition 32. For any i ∈ X, let ϕiM be the unique subterm of M of the form xiM1 . . .Mk,
and ψiM the unique positive subterm of M of the form F (N1, . . . , Nm−1, ϕiM,Nm+1, . . . , Nn).
For all i, j ∈ X, let i ⊏M j if ϕiM is a subterm of ϕjM , and i ∼M j if ψiM = ψjM .

▶ Lemma 33. ⊑M is a well-founded order on X.
∼M is an equivalence relation on X.

The relation ⊑M extends naturally to PS0(M), by letting F ⊏M i, for F ∈ PS0(M), if F
is a subterm of ϕiM .

Let X∼M
indicate the quotient of X under ∼M and let XM := X∼M

∪ PS0(M). In the
following we will use ξ, χ, . . . to indicate elements of XM .

Let us extend the relation ⊑M from X to XM :

▶ Definition 34. For all ξ, χ ∈ XM , ξ ⊑∗
M χ holds if either ξ = χ or ∃j ∈ χ ∀i ∈ ξ i ⊏M j.

Moreover, we write ξ ⊑0
M χ if ξ ̸= χ, ξ ⊑M χ and for all θ ∈ XM , ξ ⊑M θ and θ ⊑M χ

implies θ ∈ {ξ, χ}.

Observe that ξ ⊑0
M χ holds precisely when there is j ∈ χ such that for all i ∈ ξ,

ϕjM = xjQ1 . . . Ql−1(ψiM)Ql+1 . . . Qr. Moreover the following is easily proved:

▶ Lemma 35. ⊑∗
M is a well-founded preorder with a maximum element ⊤M = {i1, . . . , ir},

where M = F (ϕi1M, . . . ϕir
M).

We can define a bijection θM : PS(M) → XM sending each positive subterm P =
F (N1, . . . , Nn), where Ni = xiQi1 . . . Qini

, onto the equivalence class {x1, . . . , xn}, if n > 0,
and onto the singleton {P} otherwise (i.e. if P ∈ PS0). The existence of bijections θM :
PS(M) → XM , θN : PS(N) → XN together with ιM : {Γ−} ∗ R and ιM : {Γ−} ∗ R implies
that the two sets XM = X∼M

∪ PS0(M) and XN = X∼N
∪ PS0(N) are also in bijection

(being both in bijection with {Γ−} ∗ R).
Let L = (θN ◦ δN ) ◦ (θM ◦ δM )−1 : XM → XN be the bijection associating each element of

XM with the unique element of XN corresponding to the same occurrence of R in {Γ−} ∗ R.
Observe that the rightmost element of the list {Γ−} ∗ R is associated with ⊤M = M and
⊤N = N , we deduce that L(⊤M ) = ⊤N .

As a consequence of the bijections established above, we can enumerate the int-terms of
M and N using, as index set, XM rather than {Γ−} ∗ R. In particular, for all ξ ∈ XM , we
indicate the associated positive subterm of t as

Mξ := Fξ

(
ϕjM

)
j∈ξ

Nξ := Gξ

(
ϕjN

)
j∈L(ξ)

and the associated int-terms as

HM
ξ := Fξ(xj)j∈ξ

HN
ξ := Gξ(xj)j∈L(ξ)

We now introduce a special class of terms:

▶ Definition 36 (terms with brackets). The set of λ-terms with brackets is defined by
enriching the syntax of λ-terms with a new clause: if t is a term, then [t] is a term. For any
term with brackets M , we let M↓ indicate the term obtained by erasing all brackets from M .
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For all i ∈ X, let {ϕiM} = xi(λz⃗1.[M1]) . . . (λz⃗n.[Mn]), where ϕiM = xi(λz⃗.M1) . . . (λz⃗.Mn).

▶ Definition 37. A set U ⊆ XM is upward closed if α ∈ U and α ⊑M α′ implies α′ ∈ U .
For all upward closed sets U , the frontier of U , noted ∂U , is the set of ξ ∈ XM − U such
that, for some χ ∈ U ξ ⊑0

M χ. We conventionally let ∂∅ = {⊤M }.

For any upward closed U ⊆ XM , we define a set U(M) of λ-terms with brackets by
induction on M as follows:

if U = ∅ and M = λz⃗.M ′, then U(M) = {λz⃗.[Q] | Q is a λ-term};
if U ̸= ∅ (which implies ⊤M ∈ U) and M = λz⃗.F

(
ϕiM

)
i∈⊤M

, then

U(M) =
{
λz⃗.F

(
xiQ

i
1, . . . , Q

i
ri

)
i∈⊤M

| Qi
j ∈ U i

j(M i
j)

}
where for all i ∈ ⊤M , ϕiM = xiP

i
1 . . . P

i
ri

and U i
j = U ∩XP i

j is an upward closed set of
XMi

j .
Intuitively, P ∈ U(M) if it is a term which is defined like M at all positions corresponding
to elements of U , and has a term in brackets at all positions of ∂U .

The following facts are easily established by induction on M :

▶ Lemma 38. i. P ∈ XM (M) iff P = M .
ii. if P ∈ U(M) and P is bracket-free, then U = XM and P = M .

We now have all ingredients to define, by induction, a sequence of terms S0, . . . , Sk and a
sequence of upward closed sets U0 ⊆ · · · ⊆ Uk ⊆ XN , verifying at each step i that:
a. Si ∈ Ui(N);
b. for all ξ ∈ ∂Ui, Si contains the subterm [ML−1(ξ)] at position ξ.

Let S0 := [M ] = [Mα⊤ ], and U0 = ∅. Then S0 ∈ U0(M) certainly holds. Moreover,
∂U0 = {⊤N }, and S0 contains at its root the subterm [ML−1(⊤N )] = [M⊤M

] = [M ].
Now, to define Si+1, choose ξ ∈ ∂Ui, let χ = L−1(ξ) and

Si+1 := Si

(
[Fχ

(
ϕiM

)
i∈χ

] 7→ Gξ

(
{ϕjM}

)
j∈ξ

)
and finally let Ui+1 = Ui ∪ {ξ}. To check that Si+1 is well-defined let us observe that:

by the induction hypothesis Si contains the subterm [Mχ] = [Fχ

(
ϕiM

)
i∈χ

] at position ξ;
if one of the newly introduced variables j ∈ ξ is bound in Si, it is never introduced outside
the scope of its abstraction λxj . Indeed, by the induction hypothesis, Si coincides with
N at all positions θ ∈ Ui; hence, since N has at position ξ the subterm Gξ(ϕjN)j∈ξ, it
follows that any of the variables xj is in the scope of an abstraction λxj in Si+1 iff it is
in the scope of the same abstraction in N .

Now, from Si ∈ Ui(N), that Si+1 ∈ Ui+1(N) follows from the definition of Ui+1(N).
Moreover, if ξ′ ∈ ∂Ui+1, then either ξ′ ∈ ∂Ui, so by IH we deduce that Si contains [ML−1(ξ′)],
and since ξ′ ̸= ξ, also Si+1 does; or ξ′ ⊏0

M ξ, i.e. there is j ∈ ξ such that ξ′ ⊏0
M j; now,

position ξ′ in Si+1 contains one of the terms Qi, for i = 1, . . . , s, where [ϕjM ] = xjW1 . . .Ws

and Wi = λz⃗.Qi, and indeed we have that Qi = [ML−1(ξ′)].
Let us define now M1, . . . ,Mk as Mi := S↓

i . It is clear then that M1 = M . Let us check
that Nk = N : from ♯U0 = 0 and ♯Ui+1 = ♯Ui + 1, we deduce ♯Uk = k and thus ♯∂Uk = 0,
which implies Uk = XN . From Sk ∈ Uk(N) = XN (N), using Lemma 38 we deduce then
that Mk = S↓

k = Sk = N .
We can now establish the main result:
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▶ Proposition 39. For all a⃗ ∈ JΓK there exist r⃗ ∈ JΓK+ such that

|JMK(φ⃗) − JNK(⃗a)| ≤
∑

i∈{Γ−}∗R

JHM
i K(r⃗) − JHN

i K(r⃗)|.

Proof. Using the bijection δ : Γ+ → V (M), let rl := Jϕδ(l)MK(φ⃗).
Recall that the terms HM

i and HN
i , for i ∈ {Γ−} ∗ R, can be equivalently enumerated as

HM
L−1(ξ), H

N
ξ , for ξ ∈ XN . Let ξ0, . . . , ξk be the sequence in XN chosen in the construction

of the sequence S0, . . . , Sk, and let χ0 = L−1(ξ0), . . . , χk = L−1(ξk). We will show that for
all i = 1, . . . , k, |JMi−1K(φ) − JMiK(φ)| ≤ |JHM

χi
K(r⃗) − JHN

ξi
K(r⃗)|. Indeed we have∣∣∣JMi−1K(φ⃗) − JMiK(⃗a)

∣∣∣ =
∣∣∣JMi−1K(φ⃗) − JMi−1

(
Fχi

(
rl

)
l∈χi

7→ Gξi

(
rm

)
m∈ξi

)
K(⃗a)

∣∣∣
=

∣∣∣JMi−1K(φ⃗) − JMi−1

(
HM

χi
(r⃗) 7→ HN

ξi
(r⃗)

)
K(⃗a)

∣∣∣
≤

∣∣JHM
χi

K(r⃗) − JHN
ξi

K(r⃗)
∣∣

Using the fact that M0 = M and Mk = N , as well as the triangular law, we deduce then

|JMK(⃗a) − JNK(⃗a)| ≤ |JM0K(⃗a) − JM1K(⃗a)| + · · · + |JMk−1K(⃗a) − JMkK(⃗a)|

≤
k∑

i=1

∣∣JHM
χi

K(r⃗) − JHN
ξi

K(r⃗)
∣∣.

◀

9 A Linear Programming Language with Graded Exponentials

In the following part of this paper, we generalize some of our arguments to a restriction of
Fuzz, namely, Fuzz without additive (co)products and recursive types where gradings are
non-negative possibly infinite integers rather than real numbers. We note that while we do
not have recursive types, we have recursion. Our generalization goes as follows.

We describe our target language, which we call Λ!
S .

We extend the logical metric and the observational metric to Λ!
S , and we show that these

extensions coincide.
We extend the denotational metric and the interactive metric to Λ!

S , and we show that
the observational metric is bounded by these metrics.

9.1 Syntax
Let us give our extended target language, which we call Λ!

S , and its operational semantics.
For types, we have graded exponentials.

Types τ, σ := · · · | !nτ Environments Γ,∆,Ξ := ∅ | Γ, x :n τ

In the definition of types and environments, n varies over the set N∞
>0 = {n ∈ N | n > 0}∪{∞}

consisting of positive possibly infinite integers.
For an environment Γ, we write |Γ| for the syntactic object obtained by removing all

gradings from x :n τ in Γ. For environments Γ and ∆ such that |Γ| = |∆|, we inductively
define an environment Γ + ∆ by

∅ + ∅ = ∅, (Γ, x :n τ) + (∆, x :m τ) = (Γ + ∆), x :n+m τ.
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a ∈ R
Γ ⊢ a : R Γ ⊢ ∗ : I

f ∈ S Γ1 ⊢ M1 : R . . . Γar(f) ⊢ Mar(f) : R
Γ1 + · · · + Γar(f) ⊢ f(M1, . . . ,Mar(f)) : R

x :n τ ∈ Γ n ≥ 1
Γ ⊢ x : τ

Γ ⊢ M : τ n · Γ ≤ ∆
∆ ⊢ !M : !nτ

Γ, f :∞ τ ⊸ σ, x :1 τ ⊢ M : σ
∞ · Γ ⊢ fixτ,σ(f, x,M) : τ ⊸ σ

Γ ⊢ M : R ∆ ⊢ N : R
Γ + ∆ ⊢ M +N : R

Γ ⊢ M : !nR |a| ≤ n

Γ ⊢ a ·M : R
Γ, x :1 σ ⊢ M : τ

Γ ⊢ λx : σ.M : σ ⊸ τ

Γ ⊢ M : σ ⊸ τ ∆ ⊢ N : σ
Γ + ∆ ⊢ M N : τ

Γ ⊢ M : τ ∆ ⊢ N : σ
Γ + ∆ ⊢ M ⊗N : τ ⊗ σ

Γ ⊢ M : I Ξ ⊢ N : τ n · Γ ≤ ∆
∆ + Ξ ⊢ let ∗ be M in N : τ

Γ ⊢ M : σ1 ⊗ σ2 Ξ, x :n σ1, y :n σ2 ⊢ N : τ n · Γ ≤ ∆
∆ + Ξ ⊢ let x⊗ y be M in N : τ

Γ ⊢ M : !mσ Ξ, x :n·m σ ⊢ N : τ n · Γ ≤ ∆
∆ + Ξ ⊢ let !x be M in N : τ

Figure 10 Typing Rules

When we write Γ + ∆, we always suppose that |Γ| is equal to |∆|. We write Γ ≥ ∆ when
|Γ| = |∆| and for all x :n τ ∈ Γ and x :m τ ∈ ∆, we have n ≤ m. For an environment Γ and
n ∈ N∞

>0, we define n ·Γ to be the environment obtained by the componentwise multiplication
of gradings in Γ by n.

Terms, values contexts are given by the following BNF.

Terms M,N := · · · | !M | let !x be M in N | fixτ,σ(f, x,M) | a ·M | M +N

Values V,U := · · · | fixτ,σ(f, x,M) | !V
Contexts C[−] := · · · | !C[−] | let !x be C[−] in M | let !x be M in C[−]

Namely, we have graded exponentials !(−), let-bindings for the graded comonad, recursion,
unary multiplications and addition. We add these term constructors so as to simplify the
definition of the observational metric on Λ!

S . Typing rules are given in Figure 10, and
evaluation rules are given in Figure 11. We naturally extend the definition of Term!(Γ, τ),
Value!(τ) and Value!(Γ) to Λ!

S . We write C[−] : (Γ, τ) → (∆, σ) when C[−] satisfies the
following conditions.

For all terms Γ ⊢ M : τ , we have ∆ ⊢ C[M ] : σ.
For a fresh variable y, we have y :1 !k1τ1 ⊸ · · · !kn

τn ⊸ τ,∆ ⊢ C[y !x1 · · · !xn] : σ where
Γ = (x1 :k1 τ1, . . . , xn :kn τn).

We do not have fix in the definition of contexts because when a hole of a context is under
fix, then the second condition never holds. Intuitively, the second condition means that the
hole [−] appears linearly in the context C[].

The following propositions can be shown by induction on derivations of type judgements.

▶ Proposition 40 (Substitution). If Γ ⊢ M : τ and γ ∈ Value!(Γ), then ⊢ Mγ : τ .

▶ Proposition 41 (Preservation). If ⊢ M : τ and M ↪→ V , then ⊢ V : τ .

In general, a type judgement Γ ⊢ M : τ may have different derivations. For example,
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V ↪→ V

M1 ↪→ a1 . . . Mn ↪→ an

f(M1, . . . ,Mn) ↪→ f(a1, . . . , an)
M ↪→ a N ↪→ b c = a+ b

M +N ↪→ c

M ↪→ !b ab = c

a ·M ↪→ c

M ↪→ λx : τ.M ′ N ↪→ V M ′[V/x] ↪→ U

M N ↪→ U

M ↪→ V N ↪→ U

M ⊗N ↪→ V ⊗ U

M ↪→ ∗ N ↪→ V

let ∗ be M in N ↪→ V

M ↪→ V ⊗ U N [V/x, U/y] ↪→ W

let x⊗ y be M in N ↪→ W

M ↪→ fixτ,σ(f, x,M ′) N ↪→ V M ′[fixτ,σ(f, x,M ′)/f, V/x] ↪→ U

M N ↪→ U

M ↪→ V

!M ↪→ !V
M ↪→ !V N [V/x] ↪→ U

let !x be M in N ↪→ U

Figure 11 Evaluation Rules

x :3 R ⊢ x+ x : R has the following derivations.

x :1 R ⊢ x : R x :2 R ⊢ x : R
x :3 R ⊢ x+ x : R ,

x :2 R ⊢ x : R x :1 R ⊢ x : R
x :3 R ⊢ x+ x : R .

We can show that grading is the only source of non-uniqueness of derivations. This observation
is useful to define denotational semantics for Λ!

S in Section 12.

▶ Proposition 42. For any environment Γ and any term M , if D1 is a derivation of
Γ ⊢ M : τ and D2 is a derivation of Γ ⊢ M : σ, then τ can be obtained by changing gradings
in σ, and D1 can also be obtained by changing gradings in D2.

10 Logical Metric and Observational Metric

10.1 Metric Logical Relation
We define metric logical relations

{(−) ⪯τ
r (−) ⊆ Term!(τ) × Term!(τ)}τ∈Ty, r∈R∞

≥0

for Λ!
S by induction on τ as follows.

M ⪯R
r N ⇐⇒ if M ↪→ a, then N ↪→ b and |a− b| ≤ r

M ⪯I
r N ⇐⇒ if M ↪→ ∗, then N ↪→ ∗

M ⪯τ⊗σ
r N ⇐⇒ if M ↪→ V ⊗ V ′, then N ↪→ U ⊗ U ′

and ∃s, s′ ∈ R∞
≥0, V ⪯τ

s U and V ′ ⪯σ
s′ U ′ and s+ s′ ≤ r

M ⪯τ⊸σ
r N ⇐⇒ if M ↪→ V, then N ↪→ V ′

and ∀U,U ′ ∈ Value!(τ), if U ⪯τ
s U

′, then V U ⪯σ
r+s V

′ U ′

M ⪯!nτ
r N ⇐⇒ if M ↪→ !V, then N ↪→ !U

and ∃s ∈ R∞
≥0, V ≾τ

s U and r ≥ n s.

Let Γ = (x1 :k1 σ1, . . . , xn :kn σn) be an environment. For γ = (V1, . . . , Vn) and γ′ =
(V ′

1 , . . . , V
′

n) in Value!(Γ), and for ϵ = (r1, . . . , rn) ∈ (R∞
≥0)n, we write γ ⪯Γ

ϵ γ
′ when we have
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V1 ⪯σ1
r1
V ′

1 , . . . , Vn ⪯σn
rn
V ′

n. We define ϵ · Γ to be r1k1 + · · · + rnkn. Here, we define 0∞ to be
0. Then, for terms Γ ⊢ M : τ and Γ ⊢ N : τ , we define dlog

Γ,τ (M,N) ∈ R∞
≥0 by

dlog
Γ,τ (M,N) = inf

{
r ∈ R∞

≥0

∣∣∣∣ ∀γ, γ′ ∈ Value!(Γ), if γ ⪯Γ
ϵ γ

′, then
Mγ ⪯τ

r+ϵ·Γ Nγ
′ and Nγ ⪯τ

r+ϵ·Γ Mγ′

}
.

We call dlog the logical metric on Λ!
S . For later use, we prove the fundamental lemma.

▶ Lemma 43. Let Γ = (x1 :k1 τ1, . . . , xn :kn
τn) be an environment, and let Γ ⊢ M : τ be a

term. Given γ, γ′ ∈ Value!(Γ) such that γ ⪯Γ
ϵ γ

′, then we have Mγ ⪯τ
ϵ·Γ Mγ′.

Proof. The proof is essentially the same with [25] using step indexed logical relations counting
the number of fix-reductions in M ↪→ V . ◀

11 Observational Metric

For terms Γ ⊢ M : τ and Γ ⊢ N : τ , we define dobs
Γ,τ (M,N) ∈ R∞

≥0 by

dobs
Γ,τ (M,N) = sup

C[−] : (Γ,τ)→(∅,R)
inf

{
r ∈ R∞

≥0
∣∣C[M ] ⊑r C[N ] and C[N ] ⊑r C[M ]

}
where for ⊢ L,L′ : R,

L ⊑r L
′ ⇐⇒ if L ↪→ a, then L′ ↪→ b and |a− b| ≤ r.

▶ Theorem 44. For terms Γ ⊢ M : τ and Γ ⊢ N : τ , we have dobs
Γ,τ (M,N) = dlog

Γ,τ (M,N).

Proof. The statement follows from Lemma 45 and Lemma 46 shown below. ◀

▶ Lemma 45. For any environment Γ = (x1 :k1 τ1, . . . , xn :kn τn) and any pair of terms
Γ ⊢ M : τ and Γ ⊢ N : τ , if γ ∈ Value!(Γ) and dobs

Γ,τ (M,N) < ∞, then Mγ ⪯τ
dobs

Γ,τ
(M,N) Nγ.

Proof. By induction on τ , we show that for all Γ ⊢ M : τ and Γ ⊢ N : τ , we have
Mγ ⪯τ

dobs
Γ,τ

(M,N) Nγ. We only give a proof for τ = σ ⊗ ρ and τ = σ ⊸ ρ. (The case of

τ = σ ⊗ ρ) Given γ ∈ Value!(Γ), if Mγ diverges, then by the definition of ⪯, we obtain
Mγ ⪯dobs

Γ,τ
(M,N) Nγ. If we have Mγ ↪→ V1 ⊗ V2, then since dobs

Γ,τ (M,N) < ∞, there are
U1 ∈ Value!(σ) and U2 ∈ Value!(ρ) such that Nγ ↪→ U1 ⊗ U2. By the induction hypothesis
on σ and ρ, we have V1 ⪯σ

dobs
∅,σ(V1,U1) U1 and V2 ⪯ρ

dobs
∅,ρ(V2,U2) U2. It remains to check that

dobs
∅,σ(V1, U1) + dobs

∅,ρ(V2, U2) ≤ dobs
Γ,σ⊗ρ(M,N). Below, we suppose that γ = (W1, . . . ,Wn). We

write M̃ and Ñ for

(λx1 : τ1. · · ·λxn : τn.M)W1 · · · Wn

(λx1 : τ1. · · ·λxn : τn. N)W1 · · · Wn
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respectively. Then,

dobs
∅,σ(V1, U1) + dobs

∅,ρ(V2, U2)

≤ sup
C[−] : (∅,σ)→(∅,R)

D[−] : (∅,ρ)→(∅,R)

inf

r ∈ R≥0

∣∣∣∣∣∣
C[U1] +D[U2] ⊑r C[V1] +D[V2]
and
C[V1] +D[V2] ⊑r C[U1] +D[U2]



≤ sup
C[−] : (∅,σ)→(∅,R)

D[−] : (∅,ρ)→(∅,R)

inf


r ∈ R≥0

∣∣∣∣∣∣∣∣∣∣∣

let x⊗ y be M̃ in C[x] +D[y]
⊑r let x⊗ y be Ñ in C[x] +D[y]

and
let x⊗ y be Ñ in C[x] +D[y]

⊑r let x⊗ y be M̃ in C[x] +D[y]


≤ dobs

Γ,σ⊗ρ(M,N).

We note that we use the addition to construct contexts. We need unary multiplications
to prove the case where τ = !nσ. (The case of τ = σ ⊸ ρ) Given γ ∈ Value!(Γ), if Mγ

diverges, then by the definition of ⪯, we have Mγ ⪯τ
dobs

Γ,τ
(M,N) Nγ. Let us assume that

we have Mγ ↪→ V , and we show that Mγ ⪯τ
dobs

Γ,τ
(M,N) Nγ. From the assumption, since

dobs
Γ,τ (M,N) < ∞, we see that we have Nγ ↪→ V ′ for some V ′ ∈ Value!(τ). In order to prove
Mγ ⪯τ

dobs
Γ,τ

(M,N) Nγ, we show that for all U ⪯σ
r U ′, we have V U ⪯ρ

r+dobs
Γ,τ

(M,N) V
′ U ′. By

Lemma 43, we obtain V ′ U ⪯ρ
r V

′ U ′. Hence, by the triangle inequality, it remains to check
V U ⪯ρ

dobs
Γ,τ

(M,N) V
′ U . By the definition of ⪯, this is equivalent to Mγ U ⪯ρ

dobs
Γ,τ

(M,N) Nγ U .
It follows from the induction hypothesis on ρ that we have

Mγ U ⪯ρ

dobs
Γ,ρ

(M U,N U) Nγ U.

Since dobs
Γ,ρ(M U,N U) ≤ dobs

Γ,τ (M,N), we obtain the claim. ◀

▶ Lemma 46. For terms Γ ⊢ M : τ and Γ ⊢ N : τ , we have dobs
Γ,τ (M,N) ≤ dlog

Γ,τ (M,N).

Proof. For simplicity, we suppose that Γ = (x :k σ). We show that if

λy : !kσ. let !x be y in M ⪯!kσ⊸τ
r λy : !kσ. let !x be y in N

λy : !kσ. let !x be y in N ⪯!kσ⊸τ
r λy : !kσ. let !x be y in M

for some r ∈ R∞
≥0, then dobs

Γ,τ (M,N) ≤ r. Given a context C[−] : (Γ, τ) → (∅,R), it follows
from adequacy of denotational model (Theorem 47) that

C[M ] ↪→ a ⇐⇒ (λz : !kσ ⊸ τ. C[z !x])(λy : !kσ. let !x be y in M) ↪→ a,

C[N ] ↪→ b ⇐⇒ (λz : !kσ ⊸ τ. C[z !x])(λy : !kσ. let !x be y in N) ↪→ b.

Hence, it follows from Lemma 43 that C[M ] converges if and only if C[N ] converges. If
C[M ] ↪→ a and C[N ] ↪→ b, then we have |a − b| ≤ r. Since this holds for any context
C[−] : (Γ, τ) → (∅,R), we obtain dobs

Γ,τ (M,N) ≤ r. ◀

12 Denotational Metric

Let MetCpo⊥ be the category of pointed metric cpos and strict continuous and non-
expansive functions. Concretely, objects in MetCpo⊥ are metric cpos with least elements
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⊥ such that the distances d(⊥, x) are ∞ when x ̸= ⊥, and morphisms from X to Y are
bottom-preserving. As is shown in [3], MetCpo⊥ provides an adequate semantics for Fuzz.
By restricting their result to our language, we obtain adequacy for Λ!

S . For a term Γ ⊢ M : τ ,
let us write JMKden : JΓKden → JτKden for the interpretation of M in MetCpo⊥. We note
that JMKden is defined with respect to the type judgement rather than type derivations of
Γ ⊢ M : τ . This can be checked by observing that the underlying continuous function of
JMKden is obtained by first transforming Λ!

S into the λc-calculus [23] and then interpreting
the transformed term in Cpo⊥. In the transformation of Λ!

S into the λc-calculus, gradings
are dropped, and therefore, all derivations of a type judgement Γ ⊢ M : τ are transformed
into the same derivation in the λc-calculus.

▶ Theorem 47 ([3]). Let ⊢ M : τ be a term in Λ!
S.

If M ↪→ V , then JMKden = JV Kden.
If JMKden ̸= ⊥, then there is a value V ∈ Value!(τ) such that M ↪→ V .

For terms Γ ⊢ M : τ and Γ ⊢ N : τ , we define dden
Γ,τ (M,N) ∈ R∞

≥0 by

dden
Γ,τ (M,N) = d(JMKden, JNKden).

It is easy to see that dden is a metric on Λ!
S . We call dden the denotational metric on Λ!

S .
It follows from adequacy of MetCpo⊥ that dobs is bounded by dden.

▶ Theorem 48. dobs ≤ dden.

Proof. If there is a context C[−] : (Γ, τ) → (∅,R) such that C[M ] converges and C[N ]
diverges, then, by adequacy, we have JC[M ]K = JaK. JC[N ]K = ⊥ for some a ∈ R. Hence,
dden

Γ,τ (M,N) ≥ dden
∅,R(C[M ], C[N ]) = ∞ ≥ dobs

Γ,τ (M,N). Similarly, when C[M ] diverges and
C[N ] converges, then dden

Γ,τ (M,N) ≥ dobs
Γ,τ (M,N). Below, we suppose that for any context

C[−] : (Γ, τ) → (∅,R), C[M ] diverges if and only if C[N ] diverges. In this case, it follows
from Theorem 47 that if C[M ] ↪→ a and C[N ] ↪→ b, then |a− b| ≤ dden

Γ,τ (M,N). Hence, we
obtain the statement. ◀

13 Interactive Semantic Model

13.1 Preparation
13.1.1 Structures for Interpreting Graded Exponentials
We prepare structures on the category Int(MetCppo) that we use to interpret graded
exponentials in Λ!

S . For X ∈ MetCppo and n ∈ N∞
>0, we define n ·X to be the countably

infinite product of the underlying cpo of X equipped with the following metric:

d((xi)i∈N, (yi)i∈N) =
∑
i<n

d(xi, yi).

It is not difficult to check that n · (−) is a traced symmetric monoidal functor on MetCppo.
Hence, we can lift the functors n · (−) to symmetric monoidal functors on Int(MetCppo).
Abusing notation, we also denote the functors on Int(MetCppo) by n · (−). To be concrete,
on objects X = (X+, X−) in Int(MetCppo), we have n ·X = (n ·X+, n ·X−).

In order to interpret dereliction, digging and contraction of Λ!
S , for n,m ∈ N∞

>0, we choose
bijections un,m : N × N → N and vn,m : {0, 1} × N → N such that

un,m embeds {(i, j) ∈ N × N | i < n and j < m} into {i ∈ N | i < nm}; and
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vn,m embeds {(0, i) | i < n} ∪ {(1, i) | i < m} into {i ∈ N | i < n+m}.
Then, we define the following morphisms

dn,X : n ·X → X,

δn,m,X : nm ·X ∼= n · (m ·X),
cn,m,X : (n+m) ·X ∼= (n ·X) ⊗ (m ·X)

for n,m ∈ N∞
>0 by

dn,X((xi)i∈N, y) = ((y,⊥,⊥, . . .), x0),
δn,m,X((xi)i∈N, ((yi,j)j∈N)i∈N) = ((yu−1

n,m(i))i∈N, ((xun,m(i,j))j∈N)i∈N),

cX((xi)i∈N, ((y0,i)i∈N, (y1,i)i∈N)) = ((yvn,m(i))i∈N, ((xv−1
n,m(0,i))i∈N, (xv−1

n,m(1,i))i∈N)).

We also give a bit more general dereliction d̃n,m,X : (n+m) ·X → n ·X by

d̃n,m,X((xi)i∈N, (yi)i∈N) = ((y0, y1, . . . , yn−1,

m︷ ︸︸ ︷
⊥, . . . ,⊥, yn, yn+1, . . .),

(x0, x1, . . . , xn−1, xn+m−1, xn+m, . . .)).

We note that morphisms dn,X , δn,m,X , cn,m,X , d̃n,m,X and wX are not natural with respect
to X. Still, we can show that they are pointwise natural transformation, that is, these
morphisms satisfy naturality conditions for global elements. For example, for all x : I → X,
we have dn,X ◦ (n · x) = x ◦ dn,I = x. For more details on pointwise naturality, see [1].

13.1.2 Structures for Interpreting Weakening and Cbv Evaluation
We also need structures on Int(MetCppo) to interpret weakening and call-by-value eval-
uation. For the former, for an object X ∈ Int(MetCppo), we define wX : X → I in
Int(MetCppo) to be ⊥ : X+ → X− in MetCppo. For the latter, we use the Kleisli
category of a continuation monad

TX = X ⊗ (K,K) ∼= (X ⊸ (K, I)) ⊸ (K, I)

on Int(MetCppo) where K ∈ MetCppo is the Sierpiński space {⊥ ≤ ⊤} equipped with
d(⊥,⊤) = ∞. We denote the unit, the multiplication and the strength of the monad T by

ηX : X → TX,

µX : TTX → TX,

strX,Y : TX ⊗ Y → T (X ⊗ Y ),

and we write dstrX,Y : TX ⊗ TY → T (X ⊗ Y ) for the double strength

TX ⊗ TY −→ T (X ⊗ TY ) −→ TT (X ⊗ Y ) −→ T (X ⊗ Y ).

For n ∈ N∞
>0, we define a morphism

ξn,X : n · TX → T (n ·X)

in Int(MetCppo) to be

n · TX = n · (X ⊗ (K,K)) ∼= n ·X ⊗ n · (K,K) (n·X)⊗d−−−−−→ (n ·X) ⊗ (K,K) = T (n ·X).

We use this distributivity of n · (−) over T to model the action of graded exponentials on
terms.
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13.1.3 Structures for Interpreting Constants
For interpretation of constants a and f(M1, . . . ,Mar(f)), we follow the interpretation of terms
in ΛS : we interpret the base type R by (R, I), and we use ⌊a⌋ : I → R and ⌊f⌋ : R⊗ar(f) → R

to interpret real numbers and first order functions. For interpretation of unary multiplications,
we use

multa,n : n · (R, I) → (R, I)

for a ∈ R and n ∈ N∞
>0 such that |a| ≤ n given by

multa,n((xi)i∈N, ∗) = (∗, a(x0 + · · · + xn−1)/n).

13.2 Interactive Semantic Model and its Associated Metrics
Based on preparations in the previous sections, we give interpretation of Λ!

S in the Kleisli
category Int(MetCppo)T .

Types in Λ!
S are interpreted as follows:

JRKint = (R, I),
JIKint = (I, I),

Jτ ⊗ σKint = JτKint ⊗ JσKint

Jτ ⊸ σKint = JτKint ⊸ T JσKint = (JτKint)∗ ⊗ JσKint ⊗ (K,K)
J!nτKint = n · JτKint

where (X+, X−)∗ is defined to be (X−, X+). As usual, we interpret environments as follows:

J(x :n τ, . . . , y :m σ)Kint = n · JτKint ⊗ · · · ⊗m · JσKint.

We next define interpretation of type judgements in Λ!
S in Figure 12 where we simply write

J−K for J−Kint for the sake of legibility. We note that the interpretation is given with respect
to type derivations rather than type judgements.

We call this model the interactive semantic model for Λ!
S . The interactive semantic model

gives rise to another semantically obtained family of metrics. For terms Γ ⊢ M : τ and
Γ ⊢ N : τ , we define dint

Γ,τ (M,N) ∈ R∞
≥0 by

dint
Γ,τ (M,N) = d(JMKint, JNKint).

We prove adequacy of the interactive semantic model, which will be used to prove
dobs ≤ dint. Below, for ⊢ M : τ , we write JMK ⇓ when there is no f : I → JτK such that
JMK = f ⊗ ⊥(K,K) where ⊥X denotes the least element of Int(MetCppo)(I,X).

▶ Theorem 49. Let ⊢ M : τ be a term in Λ!
S.

If M ↪→ V , then there is a derivation of ⊢ V : τ such that JMK = JV K.
If JMK ⇓, then there is a value V such that M ↪→ V .

Proof. We can show the first claim by induction on the derivation of M ↪→ V using pointwise
naturality of morphisms in Section 13.1.1, and we omit the detail. We prove the second
claim by means of logical relations. For a type τ , we define a binary relation

Pτ ⊆ Int(MetCppo)(I, JτK) × Value!(τ)
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by

PR = {(JaK, a) | a ∈ R},
PI = {(J∗K, ∗)},

Pτ⊗σ = {(f ⊗ g, V ⊗ U) | (f, V ) ∈ Pτ and (g, U) ∈ Pσ},
Pτ⊸σ = {(f, V ) | ∀(g, U) ∈ Pτ , (f • g, V U) ∈ Pσ},
P!nτ = {(n · f, !V ) | (f, V ) ∈ Pτ }

where

P τ = {(η ◦ f,M) | M ↪→ V and (f, V ) ∈ Pτ }

∪ {(f ⊗ ⊥(K,K),M) | f : I → JτK and M ∈ Term!(τ)}

and f • g is given by

I
f⊗g−−−→ (JτK ⊸ T JσK) ⊗ JτK eval−−→ T JσK.

By the definition of Pτ , we can show that Pτ and P τ are closed under taking least upper
bounds of the first component: for all (x1,M), (x2,M), . . . ∈ Pτ , if x1 ≤ x2 ≤ · · · , then we
have

(∨
n∈N xn,M

)
∈ Pτ . We show basic lemma for Pτ : for any Γ = (x :n1 σ, . . . , y :nk

ρ),
any Γ ⊢ M : τ and any (v, V ) ∈ Pσ, . . . , (u, U) ∈ Pρ, we have

(JMK ◦ ((n1 · v) ⊗ · · · ⊗ (nk · u)),M [V/x, . . . , U/y]) ∈ P τ .

We only check the case for fix. The other cases are not difficult to check. What we check is:
for environments Γ = (x1 :k1 ρ1, . . . , xn :kn

ρn) and ∆ = (x1 :k′
1
ρ1, . . . , xn :k′

n
ρn) such that

∞·Γ ≤ ∆ and for a term ∆ ⊢ fixτ,σ(f, x,M) : τ ⊸ σ, given (v1, V1) ∈ Pρ1 , . . . , (vn, Vn) ∈ Pρn
,

we have

(Jfixτ,σ(f, x,M)K ◦ ((k1 · vn) ⊗ · · · ⊗ (kn · vn)),fixτ,σ(f, x,M)[V1/x1, . . . , Vn/xn]) ∈ Pτ⊸σ.

Let φ : Int(MetCppo)(∞ · JΓK, τ ⊸ σ) → Int(MetCppo)(∞ · JΓK, τ ⊸ σ) be the function
given in Figure 12. Then, by induction on m, we can show that(

I
(k′

1·v1)⊗···(k′
n·vn)−−−−−−−−−−−−→ J∆K d−→ J∞ · ΓK φm

−−→ Jτ ⊸ σK,fixτ,σ(f, x,M)[V1/x1, . . . , Vn/xn]
)

is an element of Pτ⊸σ. Since Pτ⊸τ ′ is closed under least upper bounds on the first component,
we obtain the claim. ◀

▶ Theorem 50. For any pair of terms Γ ⊢ M : τ and Γ ⊢ N : τ , we have dobs
Γ,τ (M,N) ≤

dint(M,N).

Proof. We can prove the statement in the same way with Theorem 48. ◀

14 Conclusion

In this paper we study quantitative reasoning about linearly typed higher-order programs.
We introduce a notion of admissibility for families of metrics on a purely linear programming
language ΛS , and among them, we investigate five notions of program metrics and how these
are related, namely the logical metric, observational metric, equational metric, denotational
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JΓ ⊢ a : RK = JΓK w−→ I
⌊a⌋−−→ (R, I) η−→ T (R, I)

JΓ ⊢ ∗ : IK = JΓK w−→ I
η−→ TI

JΓ1 + Γ2 ⊢ f(M1,M2) : RK =

JΓ1 + Γ2K
c−→ JΓ1K ⊗ JΓ2K

JM1K⊗JM2K−−−−−−−−→ T JRK ⊗ T JRK dstr−−→ T (JRK ⊗ JRK) T ⌊f⌋−−−→ T JRK

Jx :n τ ⊢ x : τK = n · JτK d−→ JτK η−→ T JτK

J∆ ⊢ !M : !nτK = J∆K d̃−→ n · JΓK
n·JMK−−−−→ n · T JτK ξ−→ T J!nτK

J∆ ⊢ fixτ,σ(f, x,M) : τ ⊸ σK = J∆K d̃−→ ∞ · JΓK the least fixed point of φ−−−−−−−−−−−−−−−−→ τ ⊸ σ

JΓ + ∆ ⊢ M +N : RK =

JΓ + ∆K c−→ JΓK ⊗ J∆K
JMK⊗JNK−−−−−−→ T JRK ⊗ T JRK dstr−−→ T (JRK ⊗ JRK) T (+)−−−→ T JRK

J∆ ⊢ a ·M : RK = J∆K d̃−→ JΓK
JMK−−−→ n · JRK

multn,a−−−−−→ JRK η−→ T JRK

JΓ ⊢ λx : σ.M : σ ⊸ τK = (the currying of JΓK ⊗ JσK
JMK−−−→ JτK) η−→ T Jσ ⊸ τK

JΓ + ∆ ⊢ M N : τK = JΓ + ∆K c−→ JΓK ⊗ J∆K
JMK⊗JNK−−−−−−→ Jτ ⊸ σK ⊗ JτK eval−−→ T JσK

JΓ + ∆ ⊢ M ⊗N : τ ⊗ σK = JΓ + ∆K c−→ JΓK ⊗ J∆K
JMK⊗JNK−−−−−−→ T JτK ⊗ T JσK dstr−−→ T Jτ ⊗ σK

J∆ + Ξ ⊢ let ∗ be M in N : τK = J∆ + ΞK c−→ JΞK ⊗ J∆K d̃−→ JΞK ⊗ n · JΓK
JNK⊗((n·JMK);ξ)−−−−−−−−−−−→

T JτK ⊗ TI
dstr−−→ T JτK

J∆ + Ξ ⊢ let x⊗ y be M in N : τK = J∆ + ΞK c−→ JΞK ⊗ J∆K d̃−→ JΞK ⊗ n · JΓK
JΞK⊗((n·JMK);ξ)−−−−−−−−−−−→

JΞK ⊗ T (n · (Jσ1K ⊗ Jσ2K))
∼=−→ JΞK ⊗ T (n · Jσ1K ⊗ n · Jσ2K)

str;JNK;µ−−−−−−→ T JτK

J∆ + Ξ ⊢ let !x be M in N : τK = J∆ + ΞK c−→ JΞK ⊗ J∆K d̃−→ JΞK ⊗ n · JΓK
JΞK⊗((n·JMK);ξ)−−−−−−−−−−−→

JΞK ⊗ T (n ·m · JσK)
∼=−→ JΞK ⊗ T (nm · JσK) str;JNK;µ−−−−−−→ T JτK

where φ : Int(MetCppo)(∞ · JΓK, τ ⊸ σ) → Int(MetCppo)(∞ · JΓK, τ ⊸ σ) is given by

φ(f) = ∞ · JΓK c−→ ∞ · JΓK ⊗ ∞ · JΓK d⊗δ−−→ JΓK ⊗ ∞ · ∞ · JΓK
JΓK⊗∞·f−−−−−−→ JΓK ⊗ ∞ · (τ ⊸ σ) the currying of JMK−−−−−−−−−−−−→ τ ⊸ σ

Figure 12 Interpretation of Terms
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metric and interactive metric. Some of our results can be seen as quantitative analogues of
well-known results about program equivalences: the observational metric is less discriminating
than or equal to semantic metrics, and non-definable functionals in the semantics are the source
of inclusions. Existence of fully abstract semantics for ΛS with respect to the observational
metric is left open. Our study reveals the intrinsic difficulty of comparing denotational models
with interactive semantic models obtained by applying the Int-construction. Indeed, their
relationship is not trivial already at the level of program equivalences. It follows from [16]
that there is a symmetric monoidal coreflection between Int(MetCppo) and MetCppo.
This is a strong connection between these models. However, we do not know whether this
categorical structure sheds light on their relationship at the level of higher-order programs.

Some of our results can be extended to a fragment of Fuzz where grading is restricted to
extended natural numbers. Providing a quantitative equational theory and an interactive
metric for full Fuzz is another very interesting topic for future work. There are some notions of
metric that we have not taken into account in this paper. In [13], Gavazzo gives coinductively
defined metrics for an extension of Fuzz with algebraic effects and recursive types, which
we do not consider here. The so-called observational quotient [17] is a way to construct less
discriminating program metrics from fine-grained ones. A thorough comparison of these
notions of program distance with the ones we introduce here is another intriguing problem
on which we plan to work in the future.
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